Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lasers interbandes en cascade“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lasers interbandes en cascade" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lasers interbandes en cascade"
Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt und Igor Vurgaftman. „The Interband Cascade Laser“. Photonics 7, Nr. 3 (15.09.2020): 75. http://dx.doi.org/10.3390/photonics7030075.
Der volle Inhalt der QuelleNing, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li und Fengqi Liu. „Interband cascade lasers with short electron injector“. Chinese Optics Letters 20, Nr. 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.
Der volle Inhalt der QuelleHoriuchi, Noriaki. „Interband cascade lasers“. Nature Photonics 9, Nr. 8 (30.07.2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.
Der volle Inhalt der QuelleVurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim et al. „Interband cascade lasers“. Journal of Physics D: Applied Physics 48, Nr. 12 (11.03.2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.
Der volle Inhalt der QuelleRyczko, Krzysztof, und Grzegorz Sęk. „Towards unstrained interband cascade lasers“. Applied Physics Express 11, Nr. 1 (04.12.2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.
Der volle Inhalt der QuelleMassengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins und J. F. Klem. „Long wavelength interband cascade lasers“. Applied Physics Letters 120, Nr. 9 (28.02.2022): 091105. http://dx.doi.org/10.1063/5.0084565.
Der volle Inhalt der QuelleYang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour und Geof C. Aers. „InAs-Based Interband Cascade Lasers“. IEEE Journal of Selected Topics in Quantum Electronics 25, Nr. 6 (November 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.
Der volle Inhalt der QuelleKim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman und J. R. Meyer. „Room temperature interband cascade lasers“. Physics Procedia 3, Nr. 2 (Januar 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.
Der volle Inhalt der QuelleYu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang et al. „Strain mapping in interband cascade lasers“. AIP Advances 12, Nr. 1 (01.01.2022): 015027. http://dx.doi.org/10.1063/5.0079193.
Der volle Inhalt der QuelleHolzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth und Gottfried Strasser. „Substrate-emitting ring interband cascade lasers“. Applied Physics Letters 111, Nr. 17 (23.10.2017): 171101. http://dx.doi.org/10.1063/1.4989514.
Der volle Inhalt der QuelleDissertationen zum Thema "Lasers interbandes en cascade"
Fordyce, Jordan. „Single-mode interband cascade lasers for petrochemical process monitoring“. Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS070.
Der volle Inhalt der QuelleInterband cascade lasers (ICLs) provide sources for the mid-infrared spectral range between 3 – 6 µm with low power consumption and efficient performance. This spectral range is of particular interest to the detection of gases involved with petrochemical processing, such as methane, ethane, and carbon dioxide due to their strong absorption in this range. Correct identification of a gas present in a sample requires single-mode emission and some tuning to match the absorption line, depending on the environmental conditions. Increasing the tuning range possible with one laser source opens up new possibilities in spectroscopic applications. An economical design alternative to what is currently commercially available can be realized through the use of slotted waveguides, which can be fabricated using photolithography, reducing the cost of fabrication.Two new types of ICLs have been designed, fabricated, and studied in this thesis: a single-section slotted ICL and a multi-section slotted Vernier tuned (SVT) ICL. An extensive study of the fabrication step and in particular dry etching was carried out to achieve vertical etching of the materials constituting the ICLs. First, the slotted ICLs were fabricated demonstrating single-mode emission in continuous wave operation at room temperature with emission close to 3.4 µm. Building from this foundation, the SVT ICL was fabricated to extend the tuning range and demonstrate that Vernier tuning could be implemented on this material system
O'Hagan, Seamus. „Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.
Der volle Inhalt der QuelleIkyo, Achakpa Barnabas. „Physical properties of interband and interband cascade edge- and surface-emitting mid-infrared lasers“. Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549457.
Der volle Inhalt der QuelleHerdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer und Thomas [Akademischer Betreuer] [Walther. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther“. Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.
Der volle Inhalt der QuelleHerdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer und Thomas [Akademischer Betreuer] Walther. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther“. Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.
Der volle Inhalt der QuellePatterson, Steven Gregory. „Bipolar cascade lasers“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8805.
Der volle Inhalt der QuelleIncludes bibliographical references.
This thesis addresses issues of the design and modeling of the Bipolar Cascade Laser (BCL), a new type of quantum well laser. BCLs consist of multiple single stage lasers electrically coupled via tunnel junctions. The BCL ideally operates by having each injected electron participate in a recombination event in the topmost active region, then tunnel from the valence band of the first active region into the conduction band of the next active region, participate in another recombination event, and so on through each stage of the cascade. As each electron may produce more than one photon the quantum efficiency of the device can, in theory, exceed 100%. This work resulted in the first room temperature, continuous-wave operation of a BCL, with a record 99.3% differential slope efficiency. The device was fully characterized and modeled to include light output and voltage versus current bias, modulation response and thermal properties. A new singlemode bipolar cascade laser, the bipolar cascade antiresonant reflecting optical waveguide laser, was proposed and modeled.
by Steven G. Patterson.
Ph.D.
Williams, Benjamin S. (Benjamin Stanford) 1974. „Terahertz quantum cascade lasers“. Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17012.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 297-310).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) that operate in the terahertz with photon energies below the semiconductor Reststrahlen band. Photons are emitted via electronic intersubband transitions that take place entirely within the conduction band, where the wavelength is chosen by engineering the well and barrier widths in multiple-quantum-well heterostructures. Fabrication of such long wavelength lasers has traditionally been challenging, since it is difficult to obtain a population inversion between such closely spaced energy levels, and because traditional dielectric waveguides become extremely lossy due to free carrier absorption. This thesis reports the development of terahertz QCLs in which the lower radiative state is depopulated via resonant longitudinal-optical phonon scattering. This mechanism is efficient and temperature insensitive, and provides protection from thermal backfilling due to the large energy separation between the lower radiative state and the injector. Both properties are important in allowing higher temperature operation at longer wavelengths. Lasers using a surface plasmon based waveguide grown on a semi-insulating (SI) GaAs substrate were demonstrated at 3.4 THz in pulsed mode up to 87 K, with peak collected powers of 14 mW at 5 K, and 4 mW at 77 K.
Additionally, the first terahertz QCLs have been demonstrated that use metalmetal waveguides, where the mode is confined between metal layers placed immediately above and below the active region. These devices have confinement factors close to unity, and are expected to be advantageous over SI-surface-plasmon waveguides, especially at long wavelengths. Such a waveguide was used to obtain lasing at 3.8 THz in pulsed mode up to a record high temperature of 137 K, whereas similar devices fabricated in SI-surface-plasmon waveguides had lower maximum lasing temperatures due to the higher losses and lower confinement factors. This thesis describes the theory, design, fabrication, and testing of terahertz quantum cascade laser devices. A summary of theory relevant to design is presented, including intersubband radiative transitions and gain, intersubband scattering, and coherent resonant tunneling transport using a tight-binding density matrix model. Analysis of the effects of the complex heterostructure phonon spectra on terahertz QCL design are considered. Calculations of the properties of various terahertz waveguides are presented and compared with experimental results. Various fabrication methods have been developed, including a robust metallic wafer bonding technique used to fabricate metal-metal waveguides. A wide variety of quantum cascade structures, both lasing and non-lasing, have been experimentally characterized, which yield valuable information about the transport and optical properties of terahertz devices. Finally, prospects for higher temperature operation of terahertz QCLs are considered.
by Benjamin S. Williams.
Ph.D.
Rochat, Michel. „Far-infrared quantum cascade lasers“. Online version, 2002. http://bibpurl.oclc.org/web/24095.
Der volle Inhalt der QuelleDhirhe, Devnath. „Monolithic tuneable quantum cascade lasers“. Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4604/.
Der volle Inhalt der Quellebin, Hashim Hasnul Hidayat. „Travelling-wave series cascade lasers“. Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493548.
Der volle Inhalt der QuelleBücher zum Thema "Lasers interbandes en cascade"
Faist, Jérôme. Quantum cascade lasers. Oxford, United Kingdom: Oxford University Press, 2013.
Den vollen Inhalt der Quelle findenJumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7.
Der volle Inhalt der QuelleSpitz, Olivier. Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74307-9.
Der volle Inhalt der QuelleUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenDecker, Arthur J. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. Cleveland, Ohio: Lewis Research Center, 1986.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenStavrou, Vasilios N., Hrsg. Quantum Cascade Lasers. InTech, 2017. http://dx.doi.org/10.5772/62674.
Der volle Inhalt der QuelleFaist, J. Quantum Cascade Lasers. Oxford University Press, Incorporated, 2013.
Den vollen Inhalt der Quelle findenFaist, Jérôme. Quantum Cascade Lasers. Oxford University Press, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lasers interbandes en cascade"
Jumpertz, Louise. „Optical Feedback in Interband Lasers“. In Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers, 35–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7_3.
Der volle Inhalt der QuelleNähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling und A. Forchel. „Mid infrared interband cascade lasers for sensing applications“. In TDLS 2009, 43–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-02292-0_6.
Der volle Inhalt der QuelleHöfling, C., C. Schneider und A. Forchel. „6.6.4 Growth of quantum wells in GaSb-based interband cascade lasers“. In Growth and Structuring, 160–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_30.
Der volle Inhalt der QuellePaul, Douglas J. „Quantum Cascade Lasers“. In Springer Series in Optical Sciences, 103–21. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-3837-9_4.
Der volle Inhalt der QuelleRazeghi, Manijeh. „Quantum Cascade Lasers“. In Technology of Quantum Devices, 271–319. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1056-1_7.
Der volle Inhalt der QuellePearsall, Thomas P. „Quantum Cascade Lasers“. In Quantum Photonics, 237–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_8.
Der volle Inhalt der QuelleRossi, Fausto. „Quantum-Cascade Lasers“. In Theory of Semiconductor Quantum Devices, 249–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10556-2_8.
Der volle Inhalt der QuelleYang, Q., und O. Ambacher. „9.4 Quantum cascade lasers“. In Laser Systems, 74–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14177-5_6.
Der volle Inhalt der QuelleKöhler, Rüdeger, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, Giles A. Davies und David A. Ritchie. „Terahertz Quantum Cascade Lasers“. In Advances in Solid State Physics, 327–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_23.
Der volle Inhalt der QuelleRazeghi, Manijeh, und Neelanjan Bandyopadhyay. „Broadband Heterogeneous Quantum Cascade Lasers“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 135–43. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lasers interbandes en cascade"
Vurgaftman, I., C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, S. Tomasulo und J. R. Meyer. „Interband Cascade Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.6.
Der volle Inhalt der QuelleLin, C. H. T., WenYen Hwang, Han Q. Le, Yao-Ming Mu, A. Liu, Jun Zheng, A. M. Delaney, Chau-Hong Kuo und Shin Shem Pei. „Interband cascade lasers“. In Symposium on Integrated Optoelectronics, herausgegeben von Luke J. Mawst und Ramon U. Martinelli. SPIE, 2000. http://dx.doi.org/10.1117/12.382089.
Der volle Inhalt der QuelleSchwarz, Benedikt, Maximilian Beiser, Florian Pilat, Sandro Dal Cin, Johannes Hillbrand, Robert Weih, Johannes Koeth und Sven Höfling. „Interband cascade laser frequency combs“. In Semiconductor Lasers and Laser Dynamics X, herausgegeben von Krassimir Panajotov, Marc Sciamanna und Sven Höfling. SPIE, 2022. http://dx.doi.org/10.1117/12.2624340.
Der volle Inhalt der QuelleHolzbauer, Martin, Borislav Hinkov, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Erich Gornik, Johannes Koeth und Gottfried Strasser. „Ring Interband Cascade Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sf2g.2.
Der volle Inhalt der QuelleKnotig, Hedwig, Aaron Maxwell Andrews, Borislav Hinkov, Robert Weih, Johannes Koeth, Benedikt Schwarz und Gottfried Strasser. „Interband Cascade and Quantum Cascade Ring Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.3.
Der volle Inhalt der QuelleTian, Zhaobing, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Robert T. Hinkey, Mark E. Curtis und Matthew B. Johnson. „Plasmon Waveguide Interband Cascade Lasers“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cthaa7.
Der volle Inhalt der QuelleYang, R. Q., B. H. Yang, D. Zhang, S. J. Murry, C. H. Lin und S. S. Pei. „Mid-IR interband cascade lasers“. In Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting. IEEE, 1997. http://dx.doi.org/10.1109/leos.1997.630592.
Der volle Inhalt der QuelleMeyer, J. R., C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle und I. Vurgaftman. „Interband cascade distributed-feedback lasers“. In Integrated Optoelectronic Devices 2007, herausgegeben von Manijeh Razeghi und Gail J. Brown. SPIE, 2007. http://dx.doi.org/10.1117/12.693445.
Der volle Inhalt der QuelleHöfling, S., R. Weih, A. Bauer, A. Forchel und M. Kamp. „Low threshold interband cascade lasers“. In SPIE OPTO, herausgegeben von Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2004680.
Der volle Inhalt der QuelleMeyer, J. R., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt und I. Vurgaftman. „High-Brightness Interband Cascade Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.stu2g.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lasers interbandes en cascade"
Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507657.
Der volle Inhalt der QuelleTober, Richard L., Carlos Monroy, Kimberly Olver und John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428728.
Der volle Inhalt der QuelleGmachl, Claire. Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada429769.
Der volle Inhalt der QuelleCapasso, Federico, und Franz X. Kaertner. Mode Locking of Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490860.
Der volle Inhalt der QuelleDeppe, Dennis G. Mid-Infrared Quantum Dot Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447301.
Der volle Inhalt der QuelleMohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada498465.
Der volle Inhalt der QuelleHarper, Warren W., Jana D. Strasburg, Pam M. Aker und John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/15010485.
Der volle Inhalt der QuelleHarper, Warren W., und John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/969751.
Der volle Inhalt der QuelleChow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab und Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), Oktober 2007. http://dx.doi.org/10.2172/921751.
Der volle Inhalt der QuelleZaytsev, Sergey, und Dabiran. Development of III-V Terahertz Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, Februar 2005. http://dx.doi.org/10.21236/ada434866.
Der volle Inhalt der Quelle