Auswahl der wissenschaftlichen Literatur zum Thema „Lasers interbandes en cascade“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lasers interbandes en cascade" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Lasers interbandes en cascade"

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt und Igor Vurgaftman. „The Interband Cascade Laser“. Photonics 7, Nr. 3 (15.09.2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Der volle Inhalt der Quelle
Annotation:
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li und Fengqi Liu. „Interband cascade lasers with short electron injector“. Chinese Optics Letters 20, Nr. 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Horiuchi, Noriaki. „Interband cascade lasers“. Nature Photonics 9, Nr. 8 (30.07.2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim et al. „Interband cascade lasers“. Journal of Physics D: Applied Physics 48, Nr. 12 (11.03.2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ryczko, Krzysztof, und Grzegorz Sęk. „Towards unstrained interband cascade lasers“. Applied Physics Express 11, Nr. 1 (04.12.2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins und J. F. Klem. „Long wavelength interband cascade lasers“. Applied Physics Letters 120, Nr. 9 (28.02.2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Der volle Inhalt der Quelle
Annotation:
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour und Geof C. Aers. „InAs-Based Interband Cascade Lasers“. IEEE Journal of Selected Topics in Quantum Electronics 25, Nr. 6 (November 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman und J. R. Meyer. „Room temperature interband cascade lasers“. Physics Procedia 3, Nr. 2 (Januar 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang et al. „Strain mapping in interband cascade lasers“. AIP Advances 12, Nr. 1 (01.01.2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth und Gottfried Strasser. „Substrate-emitting ring interband cascade lasers“. Applied Physics Letters 111, Nr. 17 (23.10.2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Lasers interbandes en cascade"

1

Fordyce, Jordan. „Single-mode interband cascade lasers for petrochemical process monitoring“. Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS070.

Der volle Inhalt der Quelle
Annotation:
Les lasers à cascade interbandes (ICL) fournissent des sources pour la gamme spectrale du moyen infrarouge compris entre 3 et 6 µm particulièrement efficaces en termes de consommation d’énergie. Cette gamme spectrale est particulièrement intéressante pour la détection des gaz impliqués dans l’industrie pétrochimique, car des gaz tels que le méthane, l'éthane et le dioxyde de carbone présentent une forte absorption dans cette gamme de longueur d’onde. L'identification correcte d'un gaz présent dans un échantillon nécessite des lasers avec une émission monomode et une certaine accordabilité en longueur d’onde. L'amélioration de cette plage de réglage possible avec une source laser offre de nouvelles opportunités dans des applications liées à la spectroscopie. Une alternative à ce qui est actuellement disponible dans le commerce peut être réalisée grâce à l'utilisation de guides d'ondes à fente, qui peuvent être fabriqués en utilisant de la photolithographie conventionnelle, réduisant ainsi le coût de fabrication.Deux nouveaux types d'ICL ont été conçus, fabriqués, et étudiés dans le cadre de cette thèse : un ICL à fentes à section unique et un ICL à fentes multiples accordé par Vernier (SVT). Une étude approfondie des étapes de fabrication et en particulier de la gravure sèche a été réalisée pour obtenir une gravure verticale des matériaux constituants les ICLs. Les premiers ICLs à fentes ont été fabriqués démontrant un e une émission monomode en régime continu à température ambiante avec une émission proche de 3.4 µm. Sur cette base, l'ICL SVT a été fabriqué pour étendre la plage d'accord et démontrer que l'accord par effet Vernier pouvait être mis en œuvre sur ce système de matériaux
Interband cascade lasers (ICLs) provide sources for the mid-infrared spectral range between 3 – 6 µm with low power consumption and efficient performance. This spectral range is of particular interest to the detection of gases involved with petrochemical processing, such as methane, ethane, and carbon dioxide due to their strong absorption in this range. Correct identification of a gas present in a sample requires single-mode emission and some tuning to match the absorption line, depending on the environmental conditions. Increasing the tuning range possible with one laser source opens up new possibilities in spectroscopic applications. An economical design alternative to what is currently commercially available can be realized through the use of slotted waveguides, which can be fabricated using photolithography, reducing the cost of fabrication.Two new types of ICLs have been designed, fabricated, and studied in this thesis: a single-section slotted ICL and a multi-section slotted Vernier tuned (SVT) ICL. An extensive study of the fabrication step and in particular dry etching was carried out to achieve vertical etching of the materials constituting the ICLs. First, the slotted ICLs were fabricated demonstrating single-mode emission in continuous wave operation at room temperature with emission close to 3.4 µm. Building from this foundation, the SVT ICL was fabricated to extend the tuning range and demonstrate that Vernier tuning could be implemented on this material system
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

O'Hagan, Seamus. „Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.

Der volle Inhalt der Quelle
Annotation:
The extension of Multi-mode Absorption Spectroscopy (MUMAS) to the infra-red spectral region for multi-species gas sensing is reported. A computationally efficient, theoretical model for analysis of MUMAS spectra is presented that avoids approximations used in previous work and treats arbitrary and time-dependent spectral intensity envelopes, thus facilitating the use of commercially available Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCLs). The first use of an ICL for MUMAS is reported using a multi-mode device operating at 3.7 μm to detect CH4 transitions over a range of 30 nm. Mode-linewidths are measured using the pressure-dependent widths of an isolated absorption feature in HCl. Multi- species sensing is demonstrated by measurement of partial pressures of CH4, C2H2 and H2CO in a low-pressure mixture with uncertainties of around 10%. Detection of CH4 in N2 at 1 bar is demonstrated using a shorter-cavity ICL to resolve spectral features in pressure-broadened and congested spectra. The first use of a QCL for MUMAS is reported using a commercially available device operating at 5.3 μm to detect multiple absorption transitions of NO at a partial pressure of 2.79 μbar in N2 buffer gas. The revised model is shown to enable good fits to MUMAS data by accounting for the time-variation of the spectral intensity profile during frequency scanning. Individual mode-linewidths are derived from fits to pressure- dependent MUMAS spectra and features from background interferences due to H2O in laboratory air are distinguished from those of the target species, NO. Data obtained at scan rates up to 10 kHz demonstrate the potential for achieving short measurement times. The development of a balanced ratiometric detection scheme for MUMAS with commercially available multi-mode lasers operating at 1.5 μm is reported for simultaneous detection of CO and CO2 showing improved SNR performance over previous direct transmission methods and suitability for a compact field-employable instrument. In addition, MUMAS spectra of CO2 are used to derive gas temperatures with an uncertainty of 3.2% in the range 300 - 700 K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ikyo, Achakpa Barnabas. „Physical properties of interband and interband cascade edge- and surface-emitting mid-infrared lasers“. Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Herdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer und Thomas [Akademischer Betreuer] [Walther. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther“. Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Herdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer und Thomas [Akademischer Betreuer] Walther. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther“. Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Patterson, Steven Gregory. „Bipolar cascade lasers“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8805.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.
Includes bibliographical references.
This thesis addresses issues of the design and modeling of the Bipolar Cascade Laser (BCL), a new type of quantum well laser. BCLs consist of multiple single stage lasers electrically coupled via tunnel junctions. The BCL ideally operates by having each injected electron participate in a recombination event in the topmost active region, then tunnel from the valence band of the first active region into the conduction band of the next active region, participate in another recombination event, and so on through each stage of the cascade. As each electron may produce more than one photon the quantum efficiency of the device can, in theory, exceed 100%. This work resulted in the first room temperature, continuous-wave operation of a BCL, with a record 99.3% differential slope efficiency. The device was fully characterized and modeled to include light output and voltage versus current bias, modulation response and thermal properties. A new singlemode bipolar cascade laser, the bipolar cascade antiresonant reflecting optical waveguide laser, was proposed and modeled.
by Steven G. Patterson.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Williams, Benjamin S. (Benjamin Stanford) 1974. „Terahertz quantum cascade lasers“. Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17012.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
Includes bibliographical references (p. 297-310).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) that operate in the terahertz with photon energies below the semiconductor Reststrahlen band. Photons are emitted via electronic intersubband transitions that take place entirely within the conduction band, where the wavelength is chosen by engineering the well and barrier widths in multiple-quantum-well heterostructures. Fabrication of such long wavelength lasers has traditionally been challenging, since it is difficult to obtain a population inversion between such closely spaced energy levels, and because traditional dielectric waveguides become extremely lossy due to free carrier absorption. This thesis reports the development of terahertz QCLs in which the lower radiative state is depopulated via resonant longitudinal-optical phonon scattering. This mechanism is efficient and temperature insensitive, and provides protection from thermal backfilling due to the large energy separation between the lower radiative state and the injector. Both properties are important in allowing higher temperature operation at longer wavelengths. Lasers using a surface plasmon based waveguide grown on a semi-insulating (SI) GaAs substrate were demonstrated at 3.4 THz in pulsed mode up to 87 K, with peak collected powers of 14 mW at 5 K, and 4 mW at 77 K.
Additionally, the first terahertz QCLs have been demonstrated that use metalmetal waveguides, where the mode is confined between metal layers placed immediately above and below the active region. These devices have confinement factors close to unity, and are expected to be advantageous over SI-surface-plasmon waveguides, especially at long wavelengths. Such a waveguide was used to obtain lasing at 3.8 THz in pulsed mode up to a record high temperature of 137 K, whereas similar devices fabricated in SI-surface-plasmon waveguides had lower maximum lasing temperatures due to the higher losses and lower confinement factors. This thesis describes the theory, design, fabrication, and testing of terahertz quantum cascade laser devices. A summary of theory relevant to design is presented, including intersubband radiative transitions and gain, intersubband scattering, and coherent resonant tunneling transport using a tight-binding density matrix model. Analysis of the effects of the complex heterostructure phonon spectra on terahertz QCL design are considered. Calculations of the properties of various terahertz waveguides are presented and compared with experimental results. Various fabrication methods have been developed, including a robust metallic wafer bonding technique used to fabricate metal-metal waveguides. A wide variety of quantum cascade structures, both lasing and non-lasing, have been experimentally characterized, which yield valuable information about the transport and optical properties of terahertz devices. Finally, prospects for higher temperature operation of terahertz QCLs are considered.
by Benjamin S. Williams.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rochat, Michel. „Far-infrared quantum cascade lasers“. Online version, 2002. http://bibpurl.oclc.org/web/24095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dhirhe, Devnath. „Monolithic tuneable quantum cascade lasers“. Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4604/.

Der volle Inhalt der Quelle
Annotation:
This thesis is concerned with the design, fabrication and characterisation of monolithic tuneable quantum cascade lasers (QCLs), which are suitable for tuneable diode laser based absorption spectroscopy and polarisation dependent spectroscopy in the mid-infrared wavelength range. All investigations and device development work were carried out using the QCL structure based on strain-compensated Ga0.331In0.669As/Al0.659In0.341As grown on an InP substrate that emits light around 4500 nm wavelength. To make the QCLs electrically tuned, two laser designs were investigated: the double ring quantum cascade laser based on the Vernier-tuning effect, and the integrated tuneable birefringent waveguide utilising current controlled birefringence in quantum-wells. The key advantage of the Vernier tuning effect based the double ring laser design is that it can facilitate both a single mode and wide-tuning range operation. The Vernier tuning enhancement factor associated with the coupled waveguide is responsible for a wide-tuning range observed in double ring configuration. However, the tuning range is limited by the available gain bandwidth (i.e. FWHM of spontaneous spectra) in the material and the maximum obtainable index change of the tuner ring. Theoretically, the tuning range of 155 nm was estimated for the double ring quantum cascade laser (DRQCL) design employed in this thesis. However, experimentally, a single mode (~19 dB single sideband suppression ratio) and tuning range of 59 nm which covers almost half the bandwidth were observed. For the first time in the history of the QCL, a research into the design, fabrication and characterisation of integrated polarisation mode convertors (PMCs) has been carried out. The PMC design is based upon etching trenches, using the RIE lag effect, of sub-wavelength dimensions into one side of a waveguide in order to achieve an asymmetric cross-sectional profile, resulting in a waveplating effect. This thesis presents such PMCs integrated with QCLs that emit 69% TE light with the polarisation angle of 65 degree from one facet and a pure TM light emitted from the other facet using a 256 μm long PMC design (design D2). An integrated tunable birefringent waveguide (ITBW) consisting of two PMCs with a differential phase shift (DPS) section between them. To probe the birefringence operation, a sub-threshold electroluminescence was employed to investigate the single pass operation of the ITBW. A theory based on the electro-optic properties of birefringence in QCL waveguides was used combined with a Jones-matrix based description to gain an understanding of the electroluminescence results. With the QCL operating above threshold, polarisation and wavelength tuning of the signal output was demonstrated. By comparing the sub-threshold electroluminescence and active polarisation angle measurement result with the Jones matrix model, the material birefringence (no DPS current), 4n, was estimated to be around 0.005 for the QCL employed in this work. However, single mode emission was not observed and 24 nm discontinuous tuning was recorded. Despite this, using a QCL incorporating an ITBW device, active polarisation control over 45 degree was demonstrated, and currently, to the best of the authors knowledge there has been no other QCL device that is capable of electronically controlling the output polarisation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

bin, Hashim Hasnul Hidayat. „Travelling-wave series cascade lasers“. Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493548.

Der volle Inhalt der Quelle
Annotation:
A travelling-wave microwave fibre-optic hnk (TWMFL) is proposed consisting of two transmission line structures that are periodically loaded with laser diodes and photodiodes, connected to one another by a fibre array.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Lasers interbandes en cascade"

1

Faist, Jérôme. Quantum cascade lasers. Oxford, United Kingdom: Oxford University Press, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Spitz, Olivier. Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74307-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Decker, Arthur J. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. Cleveland, Ohio: Lewis Research Center, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stavrou, Vasilios N., Hrsg. Quantum Cascade Lasers. InTech, 2017. http://dx.doi.org/10.5772/62674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Faist, J. Quantum Cascade Lasers. Oxford University Press, Incorporated, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Faist, Jérôme. Quantum Cascade Lasers. Oxford University Press, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Lasers interbandes en cascade"

1

Jumpertz, Louise. „Optical Feedback in Interband Lasers“. In Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers, 35–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling und A. Forchel. „Mid infrared interband cascade lasers for sensing applications“. In TDLS 2009, 43–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-02292-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Höfling, C., C. Schneider und A. Forchel. „6.6.4 Growth of quantum wells in GaSb-based interband cascade lasers“. In Growth and Structuring, 160–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Paul, Douglas J. „Quantum Cascade Lasers“. In Springer Series in Optical Sciences, 103–21. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-3837-9_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Razeghi, Manijeh. „Quantum Cascade Lasers“. In Technology of Quantum Devices, 271–319. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1056-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pearsall, Thomas P. „Quantum Cascade Lasers“. In Quantum Photonics, 237–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rossi, Fausto. „Quantum-Cascade Lasers“. In Theory of Semiconductor Quantum Devices, 249–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10556-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yang, Q., und O. Ambacher. „9.4 Quantum cascade lasers“. In Laser Systems, 74–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14177-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Köhler, Rüdeger, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, Giles A. Davies und David A. Ritchie. „Terahertz Quantum Cascade Lasers“. In Advances in Solid State Physics, 327–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Razeghi, Manijeh, und Neelanjan Bandyopadhyay. „Broadband Heterogeneous Quantum Cascade Lasers“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 135–43. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Lasers interbandes en cascade"

1

Vurgaftman, I., C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, S. Tomasulo und J. R. Meyer. „Interband Cascade Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lin, C. H. T., WenYen Hwang, Han Q. Le, Yao-Ming Mu, A. Liu, Jun Zheng, A. M. Delaney, Chau-Hong Kuo und Shin Shem Pei. „Interband cascade lasers“. In Symposium on Integrated Optoelectronics, herausgegeben von Luke J. Mawst und Ramon U. Martinelli. SPIE, 2000. http://dx.doi.org/10.1117/12.382089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schwarz, Benedikt, Maximilian Beiser, Florian Pilat, Sandro Dal Cin, Johannes Hillbrand, Robert Weih, Johannes Koeth und Sven Höfling. „Interband cascade laser frequency combs“. In Semiconductor Lasers and Laser Dynamics X, herausgegeben von Krassimir Panajotov, Marc Sciamanna und Sven Höfling. SPIE, 2022. http://dx.doi.org/10.1117/12.2624340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Holzbauer, Martin, Borislav Hinkov, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Erich Gornik, Johannes Koeth und Gottfried Strasser. „Ring Interband Cascade Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sf2g.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Knotig, Hedwig, Aaron Maxwell Andrews, Borislav Hinkov, Robert Weih, Johannes Koeth, Benedikt Schwarz und Gottfried Strasser. „Interband Cascade and Quantum Cascade Ring Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tian, Zhaobing, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Robert T. Hinkey, Mark E. Curtis und Matthew B. Johnson. „Plasmon Waveguide Interband Cascade Lasers“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cthaa7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yang, R. Q., B. H. Yang, D. Zhang, S. J. Murry, C. H. Lin und S. S. Pei. „Mid-IR interband cascade lasers“. In Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting. IEEE, 1997. http://dx.doi.org/10.1109/leos.1997.630592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Meyer, J. R., C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle und I. Vurgaftman. „Interband cascade distributed-feedback lasers“. In Integrated Optoelectronic Devices 2007, herausgegeben von Manijeh Razeghi und Gail J. Brown. SPIE, 2007. http://dx.doi.org/10.1117/12.693445.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Höfling, S., R. Weih, A. Bauer, A. Forchel und M. Kamp. „Low threshold interband cascade lasers“. In SPIE OPTO, herausgegeben von Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2004680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Meyer, J. R., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt und I. Vurgaftman. „High-Brightness Interband Cascade Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.stu2g.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Lasers interbandes en cascade"

1

Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tober, Richard L., Carlos Monroy, Kimberly Olver und John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gmachl, Claire. Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada429769.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Capasso, Federico, und Franz X. Kaertner. Mode Locking of Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490860.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Deppe, Dennis G. Mid-Infrared Quantum Dot Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada498465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harper, Warren W., Jana D. Strasburg, Pam M. Aker und John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/15010485.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Harper, Warren W., und John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/969751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab und Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), Oktober 2007. http://dx.doi.org/10.2172/921751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zaytsev, Sergey, und Dabiran. Development of III-V Terahertz Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, Februar 2005. http://dx.doi.org/10.21236/ada434866.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie