Zeitschriftenartikel zum Thema „Lasers à fibre – Innovation“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Lasers à fibre – Innovation.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Lasers à fibre – Innovation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Peng, Saize. „Modeling and numerical simulation optimization of output spectrum of thulium-doped broadband fiber optic light source“. Applied and Computational Engineering 11, Nr. 1 (25.09.2023): 59–64. http://dx.doi.org/10.54254/2755-2721/11/20230208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this research, the performance of thulium-doped fiber lasers is analyzed and a mathematical model is established. Thulium-doped fiber amplifiers are the focus of this article. A large number of simulations have been carried out in the MATLAB simulation environment, and the main work and innovation points are as follows: firstly, the energy level structure characteristics of thulium were studied, and its spectral characteristics were analyzed. After consulting some information, 3H4 to 3H6 energy level has been selected in modeling. Secondly, use the rate equations and the power propagation equations to provide a theoretical analysis of the pumping mode of thulium-doped fiber lasers. And a mathematical model of a thulium-doped fiber laser was established. The parameters such as fiber length and doping concentration in the model are discussed. Finally, to find the appropriate parameters, the genetic optimization algorithm is used to optimize the fiber length and doping concentration, and then we can get the parameters corresponding to the maximum output power of the thulium-doped fiber amplifier.
2

Leconte, Baptiste, Laurent Bigot, Philippe Roy, Raphael Jamier, Romain Dauliat, Marie-Alicia Malleville, Yves Quiquempois, Hicham El Hamzaoui und Olivier Vanvincq. „Lasers de forte puissance : vers l’avènement de fibres optiques à aire effective extrême“. Photoniques, Nr. 99 (November 2019): 23–27. http://dx.doi.org/10.1051/photon/20199923.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Les systèmes lasers fibrés sont au coeur de nombreuses recherches académiques et constituent un marché annuel mondial dépassant le milliard d’euros. L’augmentation de la puissance en sortie de ces dispositifs a été rendue possible grâce à une innovation permanente portant sur la géométrie de fibres, les matériaux qui les constituent et les méthodes de synthèse associées. Après un bref rappel historique, nous rappelons quelques éléments de contexte et présentons quelques avancées récentes en matière de fibres à très grandes aires effectives.
3

Cayne, N., G. Jacobowitz, P. Lamparello, T. Maldonado, C. Rockman, M. Adelman und L. S. Kabnick. „Endovenous procedures in varicose veins“. Phlebologie 37, Nr. 05 (2008): 229–36. http://dx.doi.org/10.1055/s-0037-1622235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
SummaryOver the past ten years endoveous treatment options for varicose veins have evovled considerably, offering clinicians a multitude of options to meet the needs of their patients. The endothermal ablation procedures have moved to the forefront as the choice modality for treating truncal reflux. Both radiofrequency ablation and endovenous laser ablation are widely accepted and interchangeable, showing comparable efficacy and safety. Although numerous endovenous laser wavelengths exist, the data indicates that the differences do not affect the efficacy or postoperative recovery of the procedure. The endovenous laser innovation that has shown early evidence of improved patient outcome is the jacket-tip fiber. The versatility of sclerotherapy makes it a critical component in the endovenous treatment of varicosities. Although not approved by the Food and Drug Administration (USA), the use of a foamed sclerosing agent is the fastest growing segment of sclerotherapy and an important treatment modality in the future of varicose vein treatment. Cutaneous lasers and intense pulse light devices contribute a crucial element, enabling clinicians to treat minute veins that may be impossible to treat with other therapies.
4

Zafar Ali, Syed, und Muhammad Khawar Islam. „Statistical dependence analysis of Erbium doped fiber ring lasers (EDFRL) chaos“. Results in Optics 5 (Dezember 2021): 100167. http://dx.doi.org/10.1016/j.rio.2021.100167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhou, Ziyue. „Design of Spontaneous Emission Spectra Amplified by S-Band Fiber and Optimization of Output Spectral Peak Power“. Highlights in Science, Engineering and Technology 72 (15.12.2023): 1023–29. http://dx.doi.org/10.54097/tzfv4695.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The thulium-doped fiber amplifier stands out as the most promising amplifier within the S-band spectrum. This paper delves into the exploration of a 1.47um Tm^(3+)-doped fluorinated fiber amplifier as the primary subject of research. This paper approach begins by establishing the rate equation and power propagation equation for the thulium ion level structure, followed by rigorous mathematical analysis and solutions. Subsequently, we employ MATLAB programming to perform comprehensive calculations, scrutinizing the amplified spontaneous emission spectra's variation concerning Thulium-Doped Fiber Amplifier (TDFA) length and pump power. In a quest for optimal performance, this paper turn to the simulated annealing algorithm to fine-tune the doping concentration and fiber length, ultimately achieving the most favorable output spectral gain. Through systematic experimentation and parameter manipulation, we've unveiled a substantial breakthrough, with our research yielding an impressive optimal gain of 31.71 dB. The ramifications of this work extend far beyond the confines of this study. It sets a solid foundation for advancements in fiber fabrication and paves the way for the realization of fiber lasers, promising significant contributions to the expansion of S-band fiber communication systems. Our findings hold great promise and are poised to drive innovation in this critical area of telecommunications.
6

Srinivasan, Thulasi, und Murat Yildirim. „Advances in Ultrafast Fiber Lasers for Multiphoton Microscopy in Neuroscience“. Photonics 10, Nr. 12 (26.11.2023): 1307. http://dx.doi.org/10.3390/photonics10121307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Multiphoton microscopy (MPM) has emerged as a vital tool in neuroscience, enabling deeper imaging with a broader field of view, as well as faster and sub-cellular resolution. Recent innovations in ultrafast fiber laser technology have revolutionized MPM applications in living brains, offering advantages like cost-effectiveness and user-friendliness. In this review, we explore the progress in ultrafast fiber laser technology, focusing on its integration into MPM for neuroscience research. We also examine the utility of femtosecond fiber lasers in fluorescence and label-free two- and three-photon microscopy applications within the field. Furthermore, we delve into future possibilities, including next-generation fiber laser designs, novel laser characteristics, and their potential for achieving high spatial and temporal resolution imaging. We also discuss the integration of fiber lasers with implanted microscopes, opening doors for clinical and fundamental neuroscience investigations.
7

Deepak, M. „A Study of Secured Enabled Passive Optical Network Enabling RoF“. Indonesian Journal of Electrical Engineering and Computer Science 9, Nr. 1 (01.01.2018): 43. http://dx.doi.org/10.11591/ijeecs.v9.i1.pp43-48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
<p>Innovation is an incorporation of radio sign in optical fiber transmission inside of system foundations that are thought to be financially savvy, pragmatic and moderately adaptable framework setup for whole deal transport remote signs. This venture proposes a Next era PON construction modeling backings RoF and OFDMA signal coordination without WDM lasers, and exhibit that 10-Gb/s OFDMA and three RF signals at 2.1GHz are transmitted more than 20km SMF in a 32-ONU in both upstream and downstream bearing. A security control unit and an optical switch are utilized associating four Optical Line Terminations (OLTs) with everyone serving just 32 Optical Network Units (ONUs). Insurance control unit gathers data of ONUs served by each OLT, and when an OLT falls flat, it will educate an active OLT to help its unique ONUs together with the burden served by the fizzled OLT.</p>
8

Dianov, E. M. „Fibre lasers“. Quantum Electronics 46, Nr. 12 (28.12.2016): 1067. http://dx.doi.org/10.1070/qel16270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fermann, Martin E., und Ingmar Hartl. „Ultrafast fibre lasers“. Nature Photonics 7, Nr. 11 (20.10.2013): 868–74. http://dx.doi.org/10.1038/nphoton.2013.280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Heber, Joerg. „Solar fibre lasers“. Nature Materials 11, Nr. 4 (22.03.2012): 266. http://dx.doi.org/10.1038/nmat3295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Vasdekis, A. E., G. E. Town, G. A. Turnbull und I. D. W. Samuel. „Fluidic fibre dye lasers“. Optics Express 15, Nr. 7 (2007): 3962. http://dx.doi.org/10.1364/oe.15.003962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Pureur, David, und Alexandre Biasi. „Les lasers à fibre“. Photoniques, Nr. 51 (Januar 2011): 47–48. http://dx.doi.org/10.1051/photon/20115147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Jauregui, Cesar, Jens Limpert und Andreas Tünnermann. „High-power fibre lasers“. Nature Photonics 7, Nr. 11 (20.10.2013): 861–67. http://dx.doi.org/10.1038/nphoton.2013.273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Fermann, Martin E., und Ingmar Hartl. „Erratum: Ultrafast fibre lasers“. Nature Photonics 7, Nr. 12 (28.10.2013): 1006. http://dx.doi.org/10.1038/nphoton.2013.317.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Fermann, Martin E., und Ingmar Hartl. „Erratum: Ultrafast fibre lasers“. Nature Photonics 7, Nr. 12 (28.10.2013): 1006. http://dx.doi.org/10.1038/nphoton.2013.319.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Pile, David. „Fibre lasers: Triwavelength source“. Nature Photonics 10, Nr. 10 (29.09.2016): 621. http://dx.doi.org/10.1038/nphoton.2016.195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Chernysheva, Maria, Aleksey Rozhin, Yuri Fedotov, Chengbo Mou, Raz Arif, Sergey M. Kobtsev, Evgeny M. Dianov und Sergei K. Turitsyn. „Carbon nanotubes for ultrafast fibre lasers“. Nanophotonics 6, Nr. 1 (06.01.2017): 1–30. http://dx.doi.org/10.1515/nanoph-2015-0156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractCarbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers.
18

Corner, L. „Fibre lasers for gamma colliders“. European Physical Journal Special Topics 223, Nr. 6 (Mai 2014): 1207–11. http://dx.doi.org/10.1140/epjst/e2014-02174-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kurkov, Andrei S., und Evgenii M. Dianov. „Moderate-power cw fibre lasers“. Quantum Electronics 34, Nr. 10 (31.10.2004): 881–900. http://dx.doi.org/10.1070/qe2004v034n10abeh002739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Davydov, B. L., und D. I. Yagodkin. „A LiNbO3switch for fibre lasers“. Quantum Electronics 35, Nr. 11 (30.11.2005): 1071–74. http://dx.doi.org/10.1070/qe2005v035n11abeh009851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Carter, Jeremy N., Richard G. Smart, Anne C. Tropper und David C. Hanna. „Thulium-doped fluorozirconate fibre lasers“. Journal of Non-Crystalline Solids 140 (Januar 1992): 10–15. http://dx.doi.org/10.1016/s0022-3093(05)80732-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Langridge, P. E., und W. J. Firth. „Doubly nonlinear fibre loop lasers“. Optics Communications 86, Nr. 2 (November 1991): 170–76. http://dx.doi.org/10.1016/0030-4018(91)90555-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Desfarges-Berthelemot, Agnès, Vincent Kermène, David Sabourdy, Johan Boullet, Philippe Roy, Jerôme Lhermite und Alain Barthélémy. „Coherent combining of fibre lasers“. Comptes Rendus Physique 7, Nr. 2 (März 2006): 244–53. http://dx.doi.org/10.1016/j.crhy.2006.01.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Turitsyn, Sergei K., Sergey A. Babin, Dmitry V. Churkin, Ilya D. Vatnik, Maxim Nikulin und Evgenii V. Podivilov. „Random distributed feedback fibre lasers“. Physics Reports 542, Nr. 2 (September 2014): 133–93. http://dx.doi.org/10.1016/j.physrep.2014.02.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Canning, John. „Fibre lasers and related technologies“. Optics and Lasers in Engineering 44, Nr. 7 (Juli 2006): 647–76. http://dx.doi.org/10.1016/j.optlaseng.2005.02.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Gabzdyl, Jack. „Fibre lasers make their mark“. Nature Photonics 2, Nr. 1 (Januar 2008): 21–23. http://dx.doi.org/10.1038/nphoton.2007.268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lauridsen, V. C., J. H. Povlsen und P. Varming. „Design of DFB fibre lasers“. Electronics Letters 34, Nr. 21 (1998): 2028. http://dx.doi.org/10.1049/el:19981446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Mears, R. J., und S. R. Baker. „Erbium fibre amplifiers and lasers“. Optical and Quantum Electronics 24, Nr. 5 (Mai 1992): 517–38. http://dx.doi.org/10.1007/bf00619752.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Alsous, M. B., J. Bittebierre, R. Richier und H. Ahmad. „Construction of all-fibre fibre lasers with multidielectric mirrors“. Pure and Applied Optics: Journal of the European Optical Society Part A 5, Nr. 6 (November 1996): 777–90. http://dx.doi.org/10.1088/0963-9659/5/6/004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Surin, A. A., S. V. Larin, T. E. Borisenko, K. Yu Prusakov und Yu S. Stirmanov. „High-power cw visible lasers pumped by Raman fibre lasers“. Quantum Electronics 46, Nr. 12 (28.12.2016): 1097–101. http://dx.doi.org/10.1070/qel16222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Woodward, Robert, und Edmund Kelleher. „2D Saturable Absorbers for Fibre Lasers“. Applied Sciences 5, Nr. 4 (30.11.2015): 1440–56. http://dx.doi.org/10.3390/app5041440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kochanowicz, M., D. Dorosz, J. Żmojda und J. Dorosz. „Beam Quality of Multicore Fibre Lasers“. Acta Physica Polonica A 118, Nr. 6 (Dezember 2010): 1177–82. http://dx.doi.org/10.12693/aphyspola.118.1177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bouteiller, J. C. „Linewidth predictions for Raman fibre lasers“. Electronics Letters 39, Nr. 21 (2003): 1511. http://dx.doi.org/10.1049/el:20030980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Supriya, Lakshmi. „Bacterial fibre shines lasers through water“. New Scientist 235, Nr. 3140 (August 2017): 7. http://dx.doi.org/10.1016/s0262-4079(17)31643-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Kurkov, Andrei S. „Fifth Russian Workshop on Fibre Lasers“. Quantum Electronics 42, Nr. 9 (30.09.2012): 753. http://dx.doi.org/10.1070/qe2012v042n09abeh014943.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Babin, S. A., und S. L. Semjonov. „Eighth Russian Workshop on Fibre Lasers“. Quantum Electronics 48, Nr. 12 (18.12.2018): 1083. http://dx.doi.org/10.1070/qel16921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ibsen, M., E. Rønnekleiv, G. J. Cowle, M. N. Zervas und R. I. Laming. „Multiple wavelength all-fibre DFB lasers“. Electronics Letters 36, Nr. 2 (2000): 143. http://dx.doi.org/10.1049/el:20000195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Liao, Z. M., und G. P. Agrawal. „Mode-partition noise in fibre lasers“. Electronics Letters 36, Nr. 14 (2000): 1188. http://dx.doi.org/10.1049/el:20000862.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Chen, W. C., W. C. Xu, F. Song, M. C. Shen, D. A. Han und L. B. Chen. „Vector solitons in femtosecond fibre lasers“. European Physical Journal D 48, Nr. 2 (19.03.2008): 255–60. http://dx.doi.org/10.1140/epjd/e2008-00048-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Chen, W. C., W. C. Xu, F. Song, M. C. Shen, D. A. Han und L. B. Chen. „Vector solitons in femtosecond fibre lasers“. European Physical Journal D 50, Nr. 1 (November 2008): 123. http://dx.doi.org/10.1140/epjd/e2008-00194-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Sabourdy, D., V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux und D. Pureur. „Power scaling of fibre lasers with all-fibre interferometric cavity“. Electronics Letters 38, Nr. 14 (2002): 692. http://dx.doi.org/10.1049/el:20020505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kobtsev, Sergey. „Methods of Radiation Wavelength Tuning in Short-Pulsed Fibre Lasers“. Photonics 11, Nr. 1 (28.12.2023): 28. http://dx.doi.org/10.3390/photonics11010028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Methods of output wavelength tuning in short-pulsed fibre lasers are analysed. Many of them rely on spectral selection principles long used in other types of lasers. For compatibility with the fibre-optical format, the corresponding elements are sealed in compact, airtight volumes with fibre-optical radiation input and output. A conclusion is presented about the relatively small number of inherently “fibre-optical” ways of tuning the wavelength of radiation. It is demonstrated that the range of output wavelength tuning in short-pulsed fibre lasers may span hundreds of nanometres (even without extension beyond the active medium gain contour through nonlinear effects). From the presented review results, it may be concluded that the search for the optimal tuning method complying with the user-preferred all-PM-fibre short-pulsed laser design is not yet complete.
43

He, Wentao, und Zhiwei Men. „Analysis on Transmission Characteristics of Stimulated Raman Scattering Based on the Multi-Sensor Signal Enhancement Technique“. Scientific Programming 2022 (11.05.2022): 1–9. http://dx.doi.org/10.1155/2022/5726718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In recent 20 years, fibre laser system has been developed rapidly and widely used for its high quality, high efficiency, high robustness, and compactness. However, there are still many factors (such as non-linear effect, thermal effect, and mode instability) that limit the further increase of power of fibre laser system. Stimulated Raman scattering (SRS) is one of the main limitations in the transmission process of fibre lasers. It not only reduces the output efficiency of fibre lasers, but also increases the damage risk of reverse Stokes light to the system. Recent studies have shown that SRS in low-mode fibres can lead to quasi-static mode degradation in addition to mode instability. With the introduction of multi-sensor enhancement technology in the fibre field, it becomes an effective means to popularise high-power and high-beam quality fibre lasers. Based on the multi-sensor signal enhancement technology, this paper explores the influence of this technology on the output efficiency of SRS in the mode-reducing fibre laser, which provides a new idea and method for the output efficiency and transmission analysis method of fibre laser.
44

ZHANG Xue-xia, 张雪霞, 葛廷武 GE Ting-wu, 谭祺瑞 TAN Qi-rui, 刘琛辰 LIU Chen-chen und 王智勇 WANG Zhi-yong. „Research of Yb-doped All Fibre Lasers“. ACTA PHOTONICA SINICA 44, Nr. 10 (2015): 1014002. http://dx.doi.org/10.3788/gzxb20154410.1014002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kobtsev, Sergey M. „Artificial saturable absorbers for ultrafast fibre lasers“. Optical Fiber Technology 68 (Januar 2022): 102764. http://dx.doi.org/10.1016/j.yofte.2021.102764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Cheng Xue, 程雪, 王建立 Wang Jianli und 刘昌华 Liu Changhua. „Beam combining of high energy fibre lasers“. Infrared and Laser Engineering 47, Nr. 1 (2018): 103011. http://dx.doi.org/10.3788/irla201847.0103011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

France, P. W. „A Review of Fluoride Glass Fibre Lasers“. Materials Science Forum 67-68 (Januar 1991): 503–8. http://dx.doi.org/10.4028/www.scientific.net/msf.67-68.503.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Shi, Jindan, Shaif-ul Alam und Morten Ibsen. „Highly efficient Raman distributed feedback fibre lasers“. Optics Express 20, Nr. 5 (15.02.2012): 5082. http://dx.doi.org/10.1364/oe.20.005082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Tsuji, Masakazu. „IPG fibre lasers and aluminium welding applications“. Welding International 23, Nr. 10 (14.09.2009): 717–22. http://dx.doi.org/10.1080/09507110902836846.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Woodward, R. I. „Dispersion engineering of mode-locked fibre lasers“. Journal of Optics 20, Nr. 3 (14.02.2018): 033002. http://dx.doi.org/10.1088/2040-8986/aaa9f5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie