Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Laser pulse filamentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Laser pulse filamentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Laser pulse filamentation"
Blonskyi, I. V., V. M. Kadan, S. V. Pavlova, I. A. Pavlov, O. I. Shpotyuk und O. K. Khasanov. „Ultrashort Light Pulses in Transparent Solids: Propagation Peculiarities and Practical Applications“. Ukrainian Journal of Physics 64, Nr. 6 (02.08.2019): 457. http://dx.doi.org/10.15407/ujpe64.6.457.
Der volle Inhalt der QuelleGeints, Y. E., A. A. Zemlyanov und O. V. Minina. „Diffraction-ray optics of femtosecond laser pulses under normal dispersion conditions in air“. Izvestiya vysshikh uchebnykh zavedenii. Fizika, Nr. 9 (2020): 157–64. http://dx.doi.org/10.17223/00213411/63/9/157.
Der volle Inhalt der QuelleSmetanin, Igor V., Alexey V. Shutov, Nikolay N. Ustinovskii, Polad V. Veliev und Vladimir D. Zvorykin. „A New Insight into High-Aspect-Ratio Channel Drilling in Translucent Dielectrics with a KrF Laser for Waveguide Applications“. Materials 15, Nr. 23 (24.11.2022): 8347. http://dx.doi.org/10.3390/ma15238347.
Der volle Inhalt der QuelleKompanets, V. O., A. A. Arkhipova, A. A. Melnikov und S. V. Chekalin. „Control of Femtosecond Filamentation by Means of the Alignment of Gas Molecules by Short-Wavelength Infrared Laser Pulses“. JETP Letters 116, Nr. 4 (August 2022): 217–23. http://dx.doi.org/10.1134/s0021364022601440.
Der volle Inhalt der QuelleDeha, I., V. Biancalana, F. Bianconi, M. Borghesi, P. Chessa, A. Giulietti, D. Giulietti, L. A. Gizzi, L. Nocera und E. Schifano. „Forward second harmonic emission from laser plasma filaments“. Laser and Particle Beams 10, Nr. 4 (Dezember 1992): 617–27. http://dx.doi.org/10.1017/s0263034600004547.
Der volle Inhalt der QuelleHuang, Hsin-Hui, Saulius Juodkazis, Eugene G. Gamaly, Vladimir T. Tikhonchuk und Koji Hatanaka. „Mechanism of Single-Cycle THz Pulse Generation and X-ray Emission: Water-Flow Irradiated by Two Ultra-Short Laser Pulses“. Nanomaterials 13, Nr. 18 (05.09.2023): 2505. http://dx.doi.org/10.3390/nano13182505.
Der volle Inhalt der QuelleKudryashov, Sergey, Alexey Rupasov, Mikhail Smayev, Pavel Danilov, Evgeny Kuzmin, Irina Mushkarina, Alexey Gorevoy, Anna Bogatskaya und Alexander Zolot’ko. „Multi-Parametric Birefringence Control in Ultrashort-Pulse Laser-Inscribed Nanolattices in Fluorite“. Nanomaterials 13, Nr. 6 (22.03.2023): 1133. http://dx.doi.org/10.3390/nano13061133.
Der volle Inhalt der QuelleFaccio, D., S. Cacciatori, V. Gorini, V. G. Sala, A. Averchi, A. Lotti, M. Kolesik und J. V. Moloney. „Analogue gravity and ultrashort laser pulse filamentation“. EPL (Europhysics Letters) 89, Nr. 3 (01.02.2010): 34004. http://dx.doi.org/10.1209/0295-5075/89/34004.
Der volle Inhalt der QuelleKristiyana, Samuel, und Dilan Dwanurendra. „Laser Guiding of Three Phase Tesla Coil High Voltage Discharges“. WSEAS TRANSACTIONS ON ELECTRONICS 11 (20.05.2020): 54–59. http://dx.doi.org/10.37394/232017.2020.11.7.
Der volle Inhalt der QuelleLu, Qi, Xiang Zhang, Arnaud Couairon und Yi Liu. „Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2“. Sensors 23, Nr. 6 (14.03.2023): 3101. http://dx.doi.org/10.3390/s23063101.
Der volle Inhalt der QuelleDissertationen zum Thema "Laser pulse filamentation"
Lotti, Antonio. „Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics“. Palaiseau, Ecole polytechnique, 2012. http://pastel.archives-ouvertes.fr/docs/00/66/56/70/PDF/tesi.pdf.
Der volle Inhalt der QuelleThis thesis deals with numerical studies of the properties and applications of spatio-temporally coupled pulses, conical wavepackets and laser filaments, in strongly nonlinear processes, such as harmonic generation and pulse reshaping. We study the energy redistribution inside these wavepackets propagating in gases and condensed media, in the linear and nonlinear regime. The energy flux constitutes a diagnostic for space-time couplings that we applied to actual experimental results. We analyze the spectral evolution of filaments in gases and derive the conditions for the generation of ultrashort pulses in the UV range. We study high harmonic generation in a gas from ultrashort conical wavepackets. In particular, we show how their propagation properties influence the harmonic output. We also study the interference of different electron trajectories. Finally, we derive the shape of stationary Airy beams in the nonlinear regime. For each topic, we present experimental results that motivated our works or were motivated by our simulations
Faccio, Daniele. „Nonlinear conical waves in ultrashort pulse filamentation and applications“. Nice, 2007. http://www.theses.fr/2007NICE4089.
Der volle Inhalt der QuelleThis thesis work regards the development of the so-called X wave model for ultra short laser pulse filamentation. Filamentation was first discovered in the early 1960’s and has since attracted much attention due to the great number of nonlinear physical processes involved and to possible applications. The x wave model proposes a view of filamentation that actually is not completely new in the sense that it is a revival of the original idea proposed by Townes et al. Of stationary, soliton-like propagation. It is now well-known that the filament may not be identified with a soliton or truly stationary wave packet as it is an extremely dynamical state continuously evolving, splitting, recombining and broadening in spectrum. The x wave model is based on the assumption that however the overall dynamics are dominated by a spontaneous evolution toward a linear stationary state. The stationary state has been identified with the X wave, a particular conical wave or wave packet in which the energy flows along a conical surface continuously refilling a central intense peak. X waves are stationary I both the linear and nonlinear regime (distinguishing them from solitons) so that the evolution within the filament dynamics may be described as a continuous diffusion of stationary conical wave states. In order to study the details of this process it is necessary to consider the full space-time coupled nature of the filamentation process. For this reason a novel spectral experimental technique that overcomes some limitations of traditional laser pulse characterization methods was developed as described in chapter 3. This spectral characterization, combined combined with an interpretation based on the description of the interacting pulses in terms of X waves leads to a deep understanding of many processes associated to filamentation such as pulse splitting, conical emission, continuum generation and sub or super-luminal (with respect to the reference material group velocity) pulse group velocities. The final part of the thesis work is dedicated to the study of the interaction between filaments and a weaker non-filamenting pulse. Cross-Phase-Modulation dominates the nonlinear interaction between the pulses and induces conical emission on the seed pulse. The conical emission has a group velocity that is matched to that of the filament pump pulse, a discovery that has important implications. Tuning the seed wavelength to the Raman Stokes wavelength and extremely efficient amplification due to the reduction of the group-velocity-mismatch with the pump, is observed with the formation of what we have called Raman X waves. These ideas are then extended from the single filament arrays, confirming the unique understanding provided by the X wave model and the potentially to exploit filament-mediated nonlinear interactions future applications
Meesat, Ridthee. „Evaluation of the radiosensitizing or radioprotective/antioxidant potential of some selected compounds by polyacrylamide gel dosimetry and Fricke dosimeter, and utilization of the femtosecond infrared laser pulse filamentation as a novel, powerful beam for cancer radiotherapy“. Thèse, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6246.
Der volle Inhalt der QuelleSchmitt-Sody, Andreas, Heiko G. Kurz, Luc Bergé, Stefan Skupin und Pavel Polynkin. „Picosecond laser filamentation in air“. IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621795.
Der volle Inhalt der QuellePainter, John. „Direct observation of laser filamentation in high-order harmonic generation /“. Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1316.pdf.
Der volle Inhalt der QuelleBarbieri, Nicholas. „Engineering and Application of Ultrafast Laser Pulses and Filamentation in Air“. Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5602.
Der volle Inhalt der QuellePh.D.
Doctorate
Physics
Sciences
Physics
Emms, Rhys Mullin. „Impact of Plasma Dynamics On Femtosecond Filamentation“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35126.
Der volle Inhalt der QuelleSalamé, Rami. „Études sur la filamentation des impulsions laser ultrabrèves dans l’air“. Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10124/document.
Der volle Inhalt der QuelleUltrashort laser pulses propagate in the air in the form of structures of one hundredmicrons of diameter called “filaments”, which have the properties of self-guiding, propagatingfor hundreds of meters, white light generation, etc. These original properties find severalapplications in the domain of remote sensing of pollutants by non-linear Lidar measurements,lightning control, remote LIBS, etc.During my PhD work we have performed several laboratory experiments and field campaignwithin the context of Teramobile project. In particular we have studied the geometry offilamentation, its robustness in an extended region of turbulent air, the propagation ofultrashort pulses beam in multijoules regime, and atmospheric applications of filamentation.For example, we have characterized the angular distribution of the conical emission in thevisible and ultraviolet spectral bands. In another series of experiments, we have proved thatatmospheric turbulence is not a limiting factor of filaments propagation, which also keep theirspectral properties useful for atmospheric applications. Finally, we have illustrated a methodof laser triggering and guiding of lightning and realized laser induced condensation of waterdroplets in laboratory as well as in a reel atmosphere
Théberge, Francis. „Third-order parametric processes during the filamentation of ultrashort laser pulses in gases“. Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24401/24401.pdf.
Der volle Inhalt der QuelleAckermann, Roland. „Propagation of terawatt-femtosecond laser pulses and its application to the triggering and guiding of high-voltage discharges“. Phd thesis, Université Claude Bernard - Lyon I, 2006. http://tel.archives-ouvertes.fr/tel-00133125.
Der volle Inhalt der QuelleEn collaberation avec des installations haute-tension, nous avons déterminé la durée de vie du plasma du filament et la longueur sur laquelle il est possible de guider des décharges électriques. Nous avons pu augmenter l'efficacité de déclenchement avec une configuration à double impulsion. Enfin, nous avons montré que le déclenchement et le guidage sont possibles sous une pluie artificielle.
Ces résultats se sont révélés très encourageants en vue d'expériences LIDAR à lumière blanche et du contrôle de la foudre.
Bücher zum Thema "Laser pulse filamentation"
Femtosecond laser filamentation. New York: Springer, 2010.
Den vollen Inhalt der Quelle findenChin, See Leang. Femtosecond Laser Filamentation. Springer, 2010.
Den vollen Inhalt der Quelle findenChin, See Leang. Femtosecond Laser Filamentation. Springer, 2010.
Den vollen Inhalt der Quelle findenMoloney, Jerome V., Andre D. Bandrauk und Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer, 2015.
Den vollen Inhalt der Quelle findenMoloney, Jerome V., Andre D. Bandrauk und Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer, 2015.
Den vollen Inhalt der Quelle findenMoloney, Jerome V., Andre D. Bandrauk und Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer International Publishing AG, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Laser pulse filamentation"
Newell, Alan C. „Short Pulse Evolution Equation“. In Laser Filamentation, 1–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_1.
Der volle Inhalt der QuelleLorin, E., M. Lytova und A. D. Bandrauk. „Nonperturbative Nonlinear Maxwell–Schrödinger Models for Intense Laser Pulse Propagation“. In Laser Filamentation, 167–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_7.
Der volle Inhalt der QuelleCouairon, A., V. Jukna, J. Darginavičius, D. Majus, N. Garejev, I. Gražulevičiūtė, G. Valiulis et al. „Filamentation and Pulse Self-compression in the Anomalous Dispersion Region of Glasses“. In Laser Filamentation, 147–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_6.
Der volle Inhalt der QuellePanagiotopoulos, Paris, Patrick Townsend Whalen, Miroslav Kolesik und Jerome V. Moloney. „Numerical Simulation of Ultra-Short Laser Pulses“. In Laser Filamentation, 185–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_8.
Der volle Inhalt der QuelleLiu, Peng, Ruxin Li und Zhizhan Xu. „THz Waveforms and Polarization from Laser Induced Plasmas by Few-Cycle Pulses“. In Laser Filamentation, 97–120. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_4.
Der volle Inhalt der QuelleFuji, Takao, Yutaka Nomura, Yu-Ting Wang, Atsushi Yabushita und Chih-Wei Luo. „Carrier-Envelope Phase of Single-Cycle Pulses Generated Through Two-Color Laser Filamentation“. In Springer Proceedings in Physics, 717–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_176.
Der volle Inhalt der QuelleXu, Han, Hui Xiong, See Leang Chin, Ya Cheng und Zhizhan Xu. „Third Harmonic X-waves Generation by Filamentation of Infrared Femtosecond Laser Pulses in Air“. In Springer Series in Chemical Physics, 822–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_267.
Der volle Inhalt der QuelleHauri, C. P., M. Merano, A. Trisorio, G. Rey und R. B. López-Martens. „Generation of high-fidelity sub-10-fs milIijoule pulses through filamentation for relativistic laser-matter experiments at 1 kHz“. In Ultrafast Phenomena XV, 101–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_33.
Der volle Inhalt der QuelleStenz, C., F. Blasco, J. Stevefelt, J. C. Pellicer, A. Antonetti, J. P. Chambaret, G. Chériaux et al. „Observation of Relativistic Self-Focusing, Self-Channeling and Filamentation of Multiterawatt Ultra-Short Laser Pulses in Optical-Field Ionized Argon Gas Jets“. In Springer Series in Chemical Physics, 115–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_48.
Der volle Inhalt der QuelleCouairon, Arnaud, Christoph M. Heyl und Cord L. Arnold. „Dimensionless numbers for numerical simulations and scaling of ultrashort laser pulse filamentation“. In Light Filaments: Structures, challenges and applications, 219–39. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/sbew527e_ch9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Laser pulse filamentation"
Vuong, L. T., M. A. Foster, A. L. Gaeta, R. B. Lopez-Martens, C. P. Hauri, T. Ruchon und A. L'Huillier. „Optimal pulse compression via sequential filamentation“. In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431507.
Der volle Inhalt der QuelleFaccio, D., F. Belgiorno, S. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino und V. G. Sala. „Analogue gravity and ultrashort laser pulse filamentation“. In SPIE Photonics Europe, herausgegeben von Benjamin J. Eggleton, Alexander L. Gaeta und Neil G. R. Broderick. SPIE, 2010. http://dx.doi.org/10.1117/12.855845.
Der volle Inhalt der QuelleIonin, Andrey A., Leonid V. Seleznev und Elena S. Sunchugasheva. „Controlling plasma channels through ultrashort laser pulse filamentation“. In SPIE Security + Defence, herausgegeben von David H. Titterton, Mark A. Richardson, Robert J. Grasso, Harro Ackermann und Willy L. Bohn. SPIE, 2013. http://dx.doi.org/10.1117/12.2028118.
Der volle Inhalt der QuelleKosareva, O. G., A. Brodeur, V. P. Kandidov und S. L. Chin. „Conical Emission of a Femtosecond Pulse Undergoing Self-focusing and Ionization in Air“. In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the21.
Der volle Inhalt der QuelleCouairon, A., M. Franco, A. Mysyrowicz, J. Biegert, U. Keller, H. S. Chakraborty und M. B. Gaarde. „Single-cycle pulse generation by filamentation in noble gases“. In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628574.
Der volle Inhalt der QuelleCouairon, A., A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier und J. M. Dudley. „Ultrashort laser pulse filamentation with Airy and Bessel beams“. In Seventeenth International School on Quantum Electronics: Laser Physics and Applications, herausgegeben von Tanja N. Dreischuh und Albena T. Daskalova. SPIE, 2013. http://dx.doi.org/10.1117/12.2014198.
Der volle Inhalt der QuelleZhao, Jiayu, Nan Zhang, Ping Chen, Cheng Gong, Lu Sun, Lie Lin, Xiaolei Wang und Weiwei Liu. „Strong confinement of THz pulse by femtosecond laser filamentation“. In Nonlinear Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/nlo.2017.nw2a.4.
Der volle Inhalt der QuelleBragheri, F., V. Degiorgio, D. Faccio, A. Averchi, A. Couairon, M. A. Porras, A. Matijosius et al. „Shocked-X-Wave Dynamics in Fs Laser Pulse Filamentation“. In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.jthb3.
Der volle Inhalt der QuelleZhao, Jiayu, Jing Yang, Ping Chen, Cheng Gong, Lu Sun und Weiwei Liu. „Strong confinement of THz pulse by femtosecond laser filamentation“. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758923.
Der volle Inhalt der QuelleYoung, P. E., und P. R. Bolton. „Propagation of sub-picosecond laser pulses through a fully ionized plasma“. In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the38.
Der volle Inhalt der Quelle