Auswahl der wissenschaftlichen Literatur zum Thema „Laser-Induced shock waves“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Laser-Induced shock waves" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Laser-Induced shock waves"

1

Campanella, Beatrice, Stefano Legnaioli, Stefano Pagnotta, Francesco Poggialini und Vincenzo Palleschi. „Shock Waves in Laser-Induced Plasmas“. Atoms 7, Nr. 2 (07.06.2019): 57. http://dx.doi.org/10.3390/atoms7020057.

Der volle Inhalt der Quelle
Annotation:
The production of a plasma by a pulsed laser beam in solids, liquids or gas is often associated with the generation of a strong shock wave, which can be studied and interpreted in the framework of the theory of strong explosion. In this review, we will briefly present a theoretical interpretation of the physical mechanisms of laser-generated shock waves. After that, we will discuss how the study of the dynamics of the laser-induced shock wave can be used for obtaining useful information about the laser–target interaction (for example, the energy delivered by the laser on the target material) or on the physical properties of the target itself (hardness). Finally, we will focus the discussion on how the laser-induced shock wave can be exploited in analytical applications of Laser-Induced Plasmas as, for example, in Double-Pulse Laser-Induced Breakdown Spectroscopy experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li, Zhihua, Duanming Zhang, Boming Yu und Li Guan. „Global-Space Propagating Characteristics of Pulsed-Laser-Induced Shock Waves“. Modern Physics Letters B 17, Nr. 19 (20.08.2003): 1057–66. http://dx.doi.org/10.1142/s0217984903006086.

Der volle Inhalt der Quelle
Annotation:
Under the propagating limitation-conditions and based on the pulsed-laser-induced plasma shock wave theory,1 the propagating rules in the global free space (including close areas and mid-far areas) of pulsed-laser-induced shock waves are established for the first time. Compared with the previous work by Bian et al.,2 our theoretical model can directly lead to the relationship of the initial Mach number M0 of plasma shock waves and the whole energy E released into plasma shock waves from a pulsed laser without any approximations or any unnecessary experimental parameters. Here, M0 is also related to the pulse duration τ0 and the sound velocity υ0 in the atmosphere; the variation of attenuation index τ, as a function of laser parameters (especial τ0), is also obtained, and our theoretical predictions of mid-far propagating rules of plasma shock waves are in good agreement with experimental results. In addition, it should be noted that Sedov–Taylor solutions to the ideal shock wave in a point explosion are only the approximations of the propagating rules in the mid-far area of pulsed-laser plasma shock waves that we obtained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kang, Qiao, Dongyi Shen, Jie Sun, Xin Luo, Wei Liu, Zhihao Zhou, Yong Zhang und Wenjie Wan. „Optical brake induced by laser shock waves“. Journal of Nonlinear Optical Physics & Materials 29, Nr. 03n04 (September 2020): 2050010. http://dx.doi.org/10.1142/s0218863520500101.

Der volle Inhalt der Quelle
Annotation:
We demonstrate an optical method to modify friction forces between two close-contact surfaces through laser-induced shock waves, which can strongly enhance surface friction forces in a sandwiched confinement with/without lubricant, due to the increase of pressure arising from excited shock waves. Such enhanced friction can even lead to a rotating rotor’s braking effect. Meanwhile, this shock wave-modified friction force is found to decrease under a free-standing configuration. This technique of optically controllable friction may pave the way for applications in optical levitation, transportation, and microfluidics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Teubner, Ulrich, Yun Kai, Theodor Schlegel, David E. Zeitoun und Walter Garen. „Laser-plasma induced shock waves in micro shock tubes“. New Journal of Physics 19, Nr. 10 (23.10.2017): 103016. http://dx.doi.org/10.1088/1367-2630/aa83d8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Eliezer, Shalom, Shirly Vinikman Pinhasi, José Maria Martinez Val, Erez Raicher und Zohar Henis. „Heating in ultraintense laser-induced shock waves“. Laser and Particle Beams 35, Nr. 2 (03.04.2017): 304–12. http://dx.doi.org/10.1017/s0263034617000192.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper considers the heating of a target in a shock wave created in a planar geometry by the ponderomotive force induced by a short laser pulse with intensity higher than 1018 W/cm2. The shock parameters were calculated using the relativistic Rankine–Hugoniot equations coupled to a laser piston model. The temperatures of the electrons and the ions were calculated as a function of time by using the energy conservation separately for ions and electrons. These equations are supplemented by the ideal gas equations of state (with one or three degrees of freedom) separately for ions and electrons. The efficiency of the transition of the work done by the laser piston into internal thermal energy is calculated in the context of the Hugoniot equations by taking into account the binary collisions during the shock wave formation from the target initial condition to the compressed domain. It is shown that for each laser intensity there is threshold pulse duration for the formation of a shock wave. The explicit calculations are done for an aluminum target.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Henis, Zohar, Shalom Eliezer und Erez Raicher. „Collisional shock waves induced by laser radiation pressure“. Laser and Particle Beams 37, Nr. 03 (11.07.2019): 268–75. http://dx.doi.org/10.1017/s0263034619000478.

Der volle Inhalt der Quelle
Annotation:
AbstractThe formation of a collisional shock wave by the light pressure of a short-laser pulse at intensities in the range of 1018–1023 W/cm2 is considered. In this regime the thermodynamic parameters of the equilibrium states, before and after the shock transition, are related to the relativistic Rankine–Hugoniot equations. The electron and ion temperatures associated with these shock waves are calculated. It is shown that if the time scale of energy dissipation is shorter than the laser pulse duration a collisional shock is formed. The electrons and the ions in the shock-heated layer may have equal or different temperatures, depending on the laser pulse duration, the material density and the laser intensity. This shock wave may serve as a heating mechanism in a fast ignition scheme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Masse, J. E., und G. Barreau. „Surface modification by laser induced shock waves“. Surface Engineering 11, Nr. 2 (Januar 1995): 131–32. http://dx.doi.org/10.1179/sur.1995.11.2.131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Henis, Zohar, und Shalom Eliezer. „Melting phenomenon in laser-induced shock waves“. Physical Review E 48, Nr. 3 (01.09.1993): 2094–97. http://dx.doi.org/10.1103/physreve.48.2094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ilhom, Saidjafarzoda, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford und Zachary Thomas. „Scalable patterning using laser-induced shock waves“. Optical Engineering 57, Nr. 04 (09.04.2018): 1. http://dx.doi.org/10.1117/1.oe.57.4.041413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lokar, Žiga, Darja Horvat, Jaka Petelin und Rok Petkovšek. „Ultrafast measurement of laser-induced shock waves“. Photoacoustics 30 (April 2023): 100465. http://dx.doi.org/10.1016/j.pacs.2023.100465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Laser-Induced shock waves"

1

Chernukha, Yevheniia. „Investigation of phase transitions triggered by laser-induced focusing shock waves“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1038.

Der volle Inhalt der Quelle
Annotation:
La capacité de certains matériaux à changer d'état fondamental sous excitation laser a ouvert un champ de recherche autour de la manipulation de leurs propriétés par la lumière. Les processus chimiques et physiques mis alors en jeu sont riches et complexes. Dans ce contexte, le rôle prédominant de la coopérativité élastique pour l’amplification et la stabilisation de la transition a été mis en évidence récemment dans un matériau à transitions de spin irradié par laser. Ces observations font apparaître la perspective de commuter de façon permanente certaines propriétés des matériaux par des ultrasons non-linéaires, des ondes de choc excitées par laser.Dans un premier temps, nous introduisons le dispositif expérimental d’imagerie mono-coup résolu en temps, associée à la technique de focalisation des ondes de chocs excitées par laser au niveau de la surface de l’échantillon. La séparation spatiale des régions irradiées par le laser et influencées par les ondes de choc propagatives permet de discerner clairement les changements du matériaux induits uniquement par les ondes de choc. Dans un second temps, nous présentons nos résultats expérimentaux en lien avec cette technique innovante, aux matériaux dont les changements de phases impliquent un changement de volume macroscopique (systèmes spin-crossover, isolants de Mott). Des analyses post-mortem des échantillons ont permis de confirmer, dans certaines conditions expérimentales, une modification permanente de la phase du matériau par action de l'onde de choc. Ces résultats ouvrent des perspectives pour la généralisation à de nombreux matériaux du phénomène de coopérativité élastique donnant lieu à des transition permanent
The ability of certain materials to change its ground state due to laser excitation has arisen a lot of opportunities for light-control of material properties. The field of photo-induced phase transitions counts a rich variety of chemical and physical processes triggered by light-matter interactions involved during the phase transition process. Recently it was reported that elastically driven cooperativity leads to the amplification of spin state in molecular crystals and prolonged the lifetime of the transient state with an ultra-short laser pulse. The cooperative response appears during the propagation of non-linear coherent strain waves, in other words shock waves, coupled with the order parameter field. Shock waves can be seen as a new challenging pathway to achieve a permanently switched state with appropriate excitations.First, we introduce time-resolved single-shot imaging combined with the laser shock focusing technique that makes it possible to generate, acoustically focus, and directly visualize under a microscope shock waves propagating and focusing along the sample surface. The spatial separation of the laser-influenced and strain-influenced regions makes it possible to disentangle the material changes produced solely by the shock waves. Second, we present experimental results involving the shock-focusing technique to materials undergoing phase transitions linked with a macroscopic change of their volume (spin-crossover systems, Mott insulators). Post-mortem analyses of the samples confirm permanent phase transition under specific experimental conditions. These innovative results open doors for a generic elastically driven cooperativity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sperrin, Malcolm. „The dynamics of urolith fragmentation arising from laser induced high-intensity shock-waves“. Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Balugani, Sofia. „Structural and electronic properties of 3d metals up to Warm Dense Matter conditions“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX067.

Der volle Inhalt der Quelle
Annotation:
Cette thèse de doctorat étudie le fer (Fe) et le cuivre (Cu) dans des conditions de pression et de température extrêmes en collaboration avec First Light Fusion (FLF), une société axée sur le développement de la technologie de fusion nucléaire par fusion par confinement inertiel (ICF). ICF comprime et chauffe le carburant DT pour induire la fusion. FLF utilise des capsules métalliques remplies de carburant DT, nécessitant une connaissance précise des équations d'état (EOS) des matériaux. Cette thèse visait à caractériser la haute pression (P) et la haute température (T) de Fe et Cu, deux métaux utilisé pour le FLF. L'étude a exploré les états thermodynamiques jusqu'à la région de la matière dense et tiède (WDM) pour Fe et Cu, où les matériaux présentent des densités sont celles d'un solide et les températures sont celles du plasma induites par des ondes de choc se déplaçant à des vitesses supersoniques. Fe est intéressant pour FLF vu son rôle dans les alliages d'acier inoxydabl. En parallèle, Fe est important en géophysique pour la modélisation de l'intérieur des planètes, en particulier pour les super-Terres avec des pressions au noyau allant jusqu'à la plage TPa. Malgré des recherches approfondies, le diagramme de phase à haute pression et à haute température de Fe, y compris sa courbe de fusion et sa phase potentielle bcc, reste controversé. Le cuivre, un métal noble, est utilisé comme agent volant ou impacteur lors des impacts à grande vitesse. Des découvertes récentes ont révélé une transition de phase solide-solide dans Cu de fcc à bcc à des pressions supérieures à 180 GPa le long de la courbe de Hugoniot. La courbe de fusion et la limite de phase du Cu dans des conditions multi-Mbar restent inexplorées. Les expériences ont été menées à l'installation laser haute puissance de l'installation européenne de rayonnement synchrotron (ESRF), en utilisant un laser haute puissance et une ligne de lumière ID24 à dispersion d'énergie (ED) de spectroscopie d'absorption de rayons X (XAS). XAS fournit des informations sur la structure électronique et la structure ionique locale de la matière dans des conditions extrêmes. La pression a été mesurée avec le système d'interféromètre de vitesse pour tout réflecteur (VISAR) et en appliquant les relations de choc. Fe et Cu ont été comprimés par choc laser, atteignant des conditions allant jusqu'à 270 GPa et 5 800 K pour Fe, et 300 GPa et 7 185 K pour Cu. La pression est mesurée avec le VISAR, mais déterminater la température est difficile. Dans ce travail, la température pourrait être extraite de la structure fine d'absorption étendue des rayons X (EXAFS), sensible à l'ordre atomique local et au désordre thermique, couplée à un modèle de température (Fe) et à des simulations de théorie DFT-dynamique moléculaire (DFT-MD) (Cu) pour mesurer les températures dans des conditions de choc. Le package Ifeffit a été utilisé pour le Fe et un script Python personnalisé pour Cu, comparant les données expérimentales avec les simulations DFT-MD du CEA Bruyères le Chatel. Le logiciel FEFF a joué un rôle crucial dans l'identification des phases cristallines dans Fe et Cu, en tenant compte des coordonnées atomiques dans les phases solides et de la dynamique vibrationnelle dans les phases liquides sous hautes pressions. Les transitions de phase solide-solide et solide-liquide pourraient être sondées, permettant d'ajouter de nouvelles contraintes au diagramme de phase haute pression et haute température de ces métaux. La température a été extraite des oscillations EXAFS combinées à des modèles dans des conditions aussi extrêmes que celles le long de la courbe de Hugoniot et représente une méthode alternative nouvelle et prometteuse. Enfin, nos résultats mettent en évidence une évolution différente de la structure électronique de ces deux métaux sous compression dynamique ce qui doit être étudié car la théorie prédit correctement la tendance, mais surestime le comportement
This PhD thesis studies iron (Fe) and copper (Cu) under extreme pressure and temperature conditions in collaboration with First Light Fusion (FLF), a company focused on developing nuclear fusion technology through inertial confinement (ICF). ICF compresses and heats the DT fuel to induce fusion. FLF uses metal capsules filled with DT fuel, requiring precise knowledge of the equations of state (EOS) of the materials. This thesis aimed to characterize the high pressure (P) and high temperature (T) of Fe and Cu, two metals used by FLF. The study explored thermodynamic states down to the warm dense matter (WDM) region for Fe and Cu, where the materials exhibit solid-state densities and wave-induced plasma temperatures produced with shock waves traveling at supersonic speeds. Fe is of interest to FLF given its role in stainless steel alloys. In parallel, Fe is important in geophysics for modeling planetary interiors, particularly for super-Earths with core pressures up to the TPa range. Despite extensive research, the high-pressure and high-temperature phase diagram of Fe, including its melting curve and bcc potential phase, remains controversial. Copper, a noble metal, is used as a flying or impactor during high-velocity impacts. Recent findings revealed a solid-solid phase transition in Cu from fcc to bcc at pressures above 180 GPa along the Hugoniot curve. The melting curve and phase boundary of Cu under multi-Mbar conditions remain unexplored. The experiments were carried out at the high-power laser facility of the European Synchrotron Radiation Facility (ESRF), using a high-power laser and an ID24 energy-dispersive (ED) X-ray absorption spectroscopy beamline (XAS). XAS provides information on the electronic structure and local ionic order of matter under extreme conditions. The pressure was measured with the Velocity Interferometer for Any Reflector (VISAR) system and applying the shock relations. Fe and Cu were compressed by laser shock, reaching conditions up to 270 GPa and 5800 K for Fe, and 300 GPa and 7185 K for Cu. The pressure is measured with the VISAR, but determining the temperature is difficult. In this work, the temperature could be extracted from the extended X-ray absorption fine structure (EXAFS), sensitive to local atomic order and thermal disorder, coupled with a temperature (Fe) model and simulations of DFT-molecular dynamics (DFT-MD) theory (Cu) for measuring temperatures under shock conditions. The Ifeffit package was used for Fe and a custom Python script for Cu, comparing experimental data with DFT-MD simulations from CEA Bruyères le Chatel. The FEFF software played a crucial role in identifying crystalline phases in Fe and Cu, taking into account atomic coordinates in solid phases and vibrational dynamics in liquid phases under high pressures. Solid-solid and solid-liquid phase transitions could be probed, allowing new constraints to be added to the high-pressure and high-temperature phase diagram of these metals. Temperature was extracted from EXAFS oscillations combined with models in conditions as extreme as those along the Hugoniot curve and represents a new and promising alternative method. Finally, our results highlight a different evolution of the electronic structure of these two metals under dynamic compression which have to be investigated more because the theory correctly predicts the trend, but overestimates the behavior
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sasoh, A., T. Ohtani und K. Mori. „Pressure Effect in a Shock-Wave–Plasma Interaction Induced by a Focused Laser Pulse“. American Physical Society, 2006. http://hdl.handle.net/2237/8852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nikitine, Dmitri. „Optical and X-Ray Diagnostics of the Formation of Laser-Induced Plasmas in Gases and Vacuum“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401345.

Der volle Inhalt der Quelle
Annotation:
Die Wechselwirkung intensiver Laserstrahlung mit Festkörperoberflächen ruft oberhalb einer bestimmten Leistungsdichte eine Materialablation hervor und führt schließlich zur Herausbildung sogenannter laserinduzierter Plasmen. In diesem Zusammenhang wird in der Literatur über nichtlinear-optische Phänomene wie Selbstfokussierung und -Kanalisierung der Laserstrahlung, sowie Ausbildung beschleunigter Plasmafragmente berichtet. Gegenstand der vorliegenden Arbeit ist die Untersuchung der Form und der Dynamik solcher laserinduzierten Plasmen an verschiedenen metallischen Targets (Al, Cu, W, Ta) in verschiedenen Umgebungen (Luft, Vakuum, Argon) unter besonderer Berücksichtigung der Vor-pulskonfigurationen des Laserstrahles. Es ist festzustellen, daß sich nach der Einwirkung eines Vorpulses der Energie 10¹²...10¹³ W/cm² auf das metallische Target in Luft und Argon eine Stoßwelle ausbildet, die im Falle von Luft zu einem Plasmakanal der Elektronendichte um 10²º 1/cm³, im Falle von Argon zu mehreren pulsierenden Kanälen führt. In der Arbeitsregime des Lasers mit einigen Vorpulsen wird in Luft und Argon die Herausbildung einer entsprechenden Anzahl von Stoßwellen im Plasma beobachtet. Als Ergebnis der Einwirkung des nachfolgenden Hauptpulses auf die entstandene Stoßwellenstruktur formiert sich ein Plasmakanal. Infolge der komplexen hydrodynamischen Wechselwirkung zwischen dem Hauptpuls und den Stoßwellen, sowie der Einwirkung starker Magnetfelder, erfolgt ein Auswurf von Plasmafragmenten entgegengesetzt dem Vektor der einfallenden Laserstrahlung. Die Fragestellung nach Abhängigkeit der Anzahl der Plasmafragmente von der Anzahl der Stoßwellen und der Pulsenergie des Lasers wird in dieser Arbeit verfolgt. Im Vakuum rufen die Vorpulse dagegen lediglich eine flache Plasmawolke hervor, in der sich als Ergebnis der Einwirkung des Hauptlaserimpulses wiederum eine Stoßwelle bildet. Weiter wird die Herausbildung von Plasmakanälen beobachtet, die in einem stumpfen Winkel zum Vektor des einfallenden Laserausstrahles geneigt sind. Mittels röntgenspektroskopischer Untersuchungen werden für die Plasmakanäle Elektronentemperaturen bis zu 2.7 keV ermittelt, was als Nachweis einer Vorbedingung zur Schaffung eines Röntgenlasers auf der Basis der vorliegenden Effekte gelten kann.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tahan, Gilles. „Étude des assemblages collés sous choc - Propriétés mécaniques après choc laser“. Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2018. http://www.theses.fr/2018ENTA0014.

Der volle Inhalt der Quelle
Annotation:
L’étude présentée s’inscrit dans la suite de travaux effectués lors de différents projets au sein de différents laboratoires concernant le développement d’un essai d’adhésion par choc laser. Le but est de développer une méthode d’évaluation des propriétés mécaniques après choc laser d’un assemblage collé. Il ne s’agira donc pas d’évaluer un niveau d’adhésion à l’aide du choc laser, mais de considérer et d’évaluer l’influence éventuelle d’un choc laser sur les propriétés mécaniques d’un assemblage. Cette étude ne concerne donc que des assemblages sains dont il conviendra d’évaluer les propriétés mécaniques avant et après choc, pour différentes amplitudes dans la gamme de pression usuelle de la méthode LASAT (LASer Adhesion Test). Cette caractérisation d’assemblages passe par le choix d’une méthode adaptée aux joints de colle, capable de prendre en compte les spécificités liées à la géométrie du substrat, mais aussi de générer un champ de contraintes souhaité. La méthode retenue est l’essai mécanique ARCAN, capable d’évaluer la tenue d’un assemblage collé sous sollicitations quasi-statiques, en traction, en cisaillement ou mixtes. En outre, l’essai ARCAN permet l’identification de lois de comportements des joints de colle. De même, il est possible de caractériser les lamelles composites dans leur comportement hors plan. Ce travail a été réalisé à l’Institut de recherche Dupuy de Lôme (IRDL), sur le site de l’ENSTA Bretagne (Brest), en partenariat avec Engie Ineo dont l’activité, la construction de radômes en matériaux composites, est concernée par les questions de contrôle des assemblages collés. Ces travaux ont aussi été l’occasion d’une collaboration avec le CEA DAM DIF qui a mis à disposition le code de simulation d’interaction laser - matière ESTHER
The study presented follows on from the work carried out during different projects in different laboratories concerning the development of a laser shock adhesion test. The goal is to develop a method for evaluating the mechanical properties after laser impact of a bonded assembly. It will therefore not be a question of evaluating a level of adhesion using laser shock, but of considering and evaluating the possible influence of a laser shock on the mechanical properties of an assembly. This study therefore only concerns healthy assemblies, the mechanical properties of which should be evaluated before and after impact, for different amplitudes in the usual pressure range of the LASAT method (LASer Adhesion Test). This characterization of assemblies involves the choice of a method suitable for adhesive joints, capable of taking into account the specificities linked to the geometry of the substrate, but also of generating a desired stress field. The method adopted is the ARCAN mechanical test, capable of evaluating the resistance of a bonded assembly under quasi-static stresses, in tension, in shear or mixed. In addition, the ARCAN test allows the identification of behavioral laws of adhesive joints. Likewise, it is possible to characterize the composite lamellae in their out-of-plane behavior. This work was carried out at Institut de Recherche Dupuy de Lôme (IRDL), on ENSTA Bretagne site (Brest), in partnership with Engie Ineo whose activity, the construction of radomes in composite materials, is concerned with questions of control of bonded assemblies. This work was also the occasion of a collaboration with the CEA DAM DIF which made available ESTHER laser - material interaction simulation code
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sutton, Darren James. „Laser induced fluorescence studies of melecular species in a high temperature, hypervelocity flow“. Phd thesis, 1995. http://hdl.handle.net/1885/138855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alizadeh, Mohsen. „Experimental investigation of shock wave - bubble interaction“. Doctoral thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B4C2-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Söhnholz, Hendrik. „Temperatureffekte bei der lasererzeugten Kavitation“. Doctoral thesis, 2016. http://hdl.handle.net/11858/00-1735-0000-0023-3E00-F.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Laser-Induced shock waves"

1

Yu, X. L., T. Ohtani, A. Sasoh, S. Kim, N. Urabe und I. S. Jeung. „Impulse characteristics of laser-induced blast wave in monoatomic gases“. In Shock Waves, 979–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Starke, R., und P. Roth. „Laser-induced-incandescence (LII) for particle sizing behind shock waves“. In Shock Waves, 347–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mariani, C., G. Jourdan, L. Houas und L. Schwaederlé. „Hot wire, laser Doppler measurements and visualization of shock induced turbulent mixing zones“. In Shock Waves, 1181–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85181-3_62.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ohki, T., A. Nakagawa, J. Sato, H. Jokura, T. Hirano, Y. Sato, H. Uenohara, M. Sun, T. Tominaga und K. Takayama. „Experimental application of pulsed Ho:YAG laser-induced liquid jet for neuroendoscopic hematoma removal“. In Shock Waves, 1279–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Andresen, P., W. H. Beck, G. Eitelberg, H. Hippler, T. J. McIntyre, A. Riedl, T. Seelemann und J. Troe. „A laser induced fluorescence system for the high enthalpy shock tunnel (HEG) in Göttingen“. In Shock Waves, 657–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9_103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mizukaki, T. „Application of laser-induced thermal acoustics to temperature measurement of the air behind shock waves“. In Shock Waves, 427–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_68.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sato, J., A. Nakagawa, T. Saito, T. Hirano, T. Ohki, H. Uenohara, K. Takayama und T. Tominaga. „Development of Ho: YAG laser-induced cavitational shock wave generator for endoscopic shock wave exposure“. In Shock Waves, 737–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fukui, Toshihide, George T. Oshima und Toshi Fujiwara. „Unsteady Nonequilibrium Model of a Laser-Induced Blast Wave“. In Shock Waves @ Marseille IV, 413–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79532-9_68.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Prat, Ch, und M. Autric. „High-Power Laser Radiation-Induced Shock Waves in Solids“. In Shock Waves @ Marseille III, 255–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78835-2_43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Houas, L., und G. Jourdan. „An investigation of shock induced gas mixing in a large cross section shock tube with a laser sheet technique“. In Shock Waves, 335–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Laser-Induced shock waves"

1

Rastegari, Ali, und Jean-Claude Diels. „Investigation of Shock-waves Generated by Laser-induced Discharges Triggered by UV Filaments“. In CLEO: Fundamental Science, FW3C.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3c.5.

Der volle Inhalt der Quelle
Annotation:
Shock-waves generated by UV filament induced electrical discharges are investigated. A nonlinear supersonic regime is followed by linear shock wave propagation at a sound velocity affected by the total energy deposited into the electrical.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tittmann, B. R., L. J. Graham und R. Linebarger. „Laser-Induced Acoustic Shock Waves“. In IEEE 1987 Ultrasonics Symposium. IEEE, 1987. http://dx.doi.org/10.1109/ultsym.1987.199130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Uhlenbusch, J., und W. Viöl. „Multikilohertz repetition rate laser-induced plasma in hydrogen“. In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Maeno, K., S. Yokoyama und Y. Hanaoka. „Study on laser-induced cavitation bubbles in cryogenic liquids“. In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39513.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Leela, Ch, V. Rakesh Kumar, Surya P. Tewari und P. Prem Kiran. „Laser-induced shock waves from structured surfaces“. In SPIE Photonics Europe, herausgegeben von Thomas Graf, Jacob I. Mackenzie, Helena Jelínková und John Powell. SPIE, 2012. http://dx.doi.org/10.1117/12.921626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Xin-Zen, Zhi-Ping Tang, Gunag-Quan Zhou und Sheng-Bin Lin. „Thermal effects in laser induced strong shock waves“. In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Eliezer, S., Z. Henis und Y. Paiss. „Phase transitions in subnanosecond laser induced shock waves“. In The 11th international workshop on laser interaction and related plasma phenomena. AIP, 1994. http://dx.doi.org/10.1063/1.46947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Senecha, V. K., H. C. Pant und Buddhi K. Godwal. „Shock pressure enhancement in plane-layered targets through laser induced shock waves“. In ECLIM 2002: 27th European conference on Laser Interaction with Matter, herausgegeben von Oleg N. Krokhin, Sergey Y. Gus'kov und Yury A. Merkul'ev. SPIE, 2003. http://dx.doi.org/10.1117/12.535938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gu, Z., M. Perton, S. E. Kruger, A. Blouin, D. Lévesque, J. P. Monchalin, A. Johnston et al. „LASER INDUCED SHOCK WAVES FOR COMPOSITES ADHESIVE BOND TESTING“. In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION VOLUME 29. AIP, 2010. http://dx.doi.org/10.1063/1.3362407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Li, Yanqiang Yang, Yinghui Wang, Pengcheng Jin, Zhiren Zheng und Wenhui Su. „Ultrafast microscopy of shock waves induced by femtosecond laser“. In 27th International congress on High-Speed Photography and Photonics, herausgegeben von Xun Hou, Wei Zhao und Baoli Yao. SPIE, 2007. http://dx.doi.org/10.1117/12.725164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Laser-Induced shock waves"

1

Lu, Yongfeng. DTPH56-14-S-N000006 Laser Peening for Preventing Pipe Corrosion and Failure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2017. http://dx.doi.org/10.55274/r0011992.

Der volle Inhalt der Quelle
Annotation:
The ultimate goal of this project is to investigate and develop laser peening of stainless and carbon steels used for pipeline construction to improve their corrosion resistance. The corrosion resistance of pipelines will be enhanced via the compressive residual stress created by laser-induced shock waves during laser peening. It is anticipated that using laser shock peening in the construction of a pipeline will highly improve the reliability, safety, and lifespan of the nation's pipeline transportation system. As stated in our proposal, the major goals of this project will be achieved by organizing the project into four phases, each with specific objectives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hart, Carl, Gregory Lyons und Michael White. Spherical shock waveform reconstruction by heterodyne interferometry. Engineer Research and Development Center (U.S.), Mai 2024. http://dx.doi.org/10.21079/11681/48471.

Der volle Inhalt der Quelle
Annotation:
The indirect measurement of shock waveforms by acousto-optic sensing requires a method to reconstruct the field from the projected data. Under the assumption of spherical symmetry, one approach is to reconstruct the field by the Abel inversion integral transform. When the acousto-optic sensing modality measures the change in optical phase difference time derivative, as for a heterodyne Mach–Zehnder interferometer, e.g., a laser Doppler vibrometer, the reconstructed field is the fluctuating refractive index time derivative. A technique is derived that reconstructs the fluctuating index directly by assuming plane wave propagation local to a probe beam. With synthetic data, this approach is compared to the Abel inversion integral transform and then applied to experimental data of laser-induced shockwaves. Time waveforms are reconstructed with greater accuracy except for the tail of the waveform that maps spatially to positions near a virtual origin. Furthermore, direct reconstruction of the fluctuating index field eliminates the required time integration and results in more accurate shock waveform peak values, rise times, and positive phase duration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hart, Carl R., und Gregory W. Lyons. A Measurement System for the Study of Nonlinear Propagation Through Arrays of Scatterers. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38621.

Der volle Inhalt der Quelle
Annotation:
Various experimental challenges exist in measuring the spatial and temporal field of a nonlinear acoustic pulse propagating through an array of scatterers. Probe interference and undesirable high-frequency response plague typical approaches with acoustic microphones, which are also limited to resolving the pressure field at a single position. Measurements made with optical methods do not have such drawbacks, and schlieren measurements are particularly well suited to measuring both the spatial and temporal evolution of nonlinear pulse propagation in an array of scatterers. Herein, a measurement system is described based on a z-type schlieren setup, which is suitable for measuring axisymmetric phenomena and visualizing weak shock propagation. In order to reduce directivity and initiate nearly spherically-symmetric propagation, laser induced breakdown serves as the source for the nonlinear pulse. A key component of the schlieren system is a standard schliere, which allows quantitative schlieren measurements to be performed. Sizing of the standard schliere is aided by generating estimates of the expected light refraction from the nonlinear pulse, by way of the forward Abel transform. Finally, considerations for experimental sequencing, image capture, and a reconfigurable rod array designed to minimize spurious wave interactions are specified. 15.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie