Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Laser-Induced shock waves“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Laser-Induced shock waves" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Laser-Induced shock waves"
Campanella, Beatrice, Stefano Legnaioli, Stefano Pagnotta, Francesco Poggialini und Vincenzo Palleschi. „Shock Waves in Laser-Induced Plasmas“. Atoms 7, Nr. 2 (07.06.2019): 57. http://dx.doi.org/10.3390/atoms7020057.
Der volle Inhalt der QuelleLi, Zhihua, Duanming Zhang, Boming Yu und Li Guan. „Global-Space Propagating Characteristics of Pulsed-Laser-Induced Shock Waves“. Modern Physics Letters B 17, Nr. 19 (20.08.2003): 1057–66. http://dx.doi.org/10.1142/s0217984903006086.
Der volle Inhalt der QuelleKang, Qiao, Dongyi Shen, Jie Sun, Xin Luo, Wei Liu, Zhihao Zhou, Yong Zhang und Wenjie Wan. „Optical brake induced by laser shock waves“. Journal of Nonlinear Optical Physics & Materials 29, Nr. 03n04 (September 2020): 2050010. http://dx.doi.org/10.1142/s0218863520500101.
Der volle Inhalt der QuelleTeubner, Ulrich, Yun Kai, Theodor Schlegel, David E. Zeitoun und Walter Garen. „Laser-plasma induced shock waves in micro shock tubes“. New Journal of Physics 19, Nr. 10 (23.10.2017): 103016. http://dx.doi.org/10.1088/1367-2630/aa83d8.
Der volle Inhalt der QuelleEliezer, Shalom, Shirly Vinikman Pinhasi, José Maria Martinez Val, Erez Raicher und Zohar Henis. „Heating in ultraintense laser-induced shock waves“. Laser and Particle Beams 35, Nr. 2 (03.04.2017): 304–12. http://dx.doi.org/10.1017/s0263034617000192.
Der volle Inhalt der QuelleHenis, Zohar, Shalom Eliezer und Erez Raicher. „Collisional shock waves induced by laser radiation pressure“. Laser and Particle Beams 37, Nr. 03 (11.07.2019): 268–75. http://dx.doi.org/10.1017/s0263034619000478.
Der volle Inhalt der QuelleMasse, J. E., und G. Barreau. „Surface modification by laser induced shock waves“. Surface Engineering 11, Nr. 2 (Januar 1995): 131–32. http://dx.doi.org/10.1179/sur.1995.11.2.131.
Der volle Inhalt der QuelleHenis, Zohar, und Shalom Eliezer. „Melting phenomenon in laser-induced shock waves“. Physical Review E 48, Nr. 3 (01.09.1993): 2094–97. http://dx.doi.org/10.1103/physreve.48.2094.
Der volle Inhalt der QuelleIlhom, Saidjafarzoda, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford und Zachary Thomas. „Scalable patterning using laser-induced shock waves“. Optical Engineering 57, Nr. 04 (09.04.2018): 1. http://dx.doi.org/10.1117/1.oe.57.4.041413.
Der volle Inhalt der QuelleLokar, Žiga, Darja Horvat, Jaka Petelin und Rok Petkovšek. „Ultrafast measurement of laser-induced shock waves“. Photoacoustics 30 (April 2023): 100465. http://dx.doi.org/10.1016/j.pacs.2023.100465.
Der volle Inhalt der QuelleDissertationen zum Thema "Laser-Induced shock waves"
Chernukha, Yevheniia. „Investigation of phase transitions triggered by laser-induced focusing shock waves“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1038.
Der volle Inhalt der QuelleThe ability of certain materials to change its ground state due to laser excitation has arisen a lot of opportunities for light-control of material properties. The field of photo-induced phase transitions counts a rich variety of chemical and physical processes triggered by light-matter interactions involved during the phase transition process. Recently it was reported that elastically driven cooperativity leads to the amplification of spin state in molecular crystals and prolonged the lifetime of the transient state with an ultra-short laser pulse. The cooperative response appears during the propagation of non-linear coherent strain waves, in other words shock waves, coupled with the order parameter field. Shock waves can be seen as a new challenging pathway to achieve a permanently switched state with appropriate excitations.First, we introduce time-resolved single-shot imaging combined with the laser shock focusing technique that makes it possible to generate, acoustically focus, and directly visualize under a microscope shock waves propagating and focusing along the sample surface. The spatial separation of the laser-influenced and strain-influenced regions makes it possible to disentangle the material changes produced solely by the shock waves. Second, we present experimental results involving the shock-focusing technique to materials undergoing phase transitions linked with a macroscopic change of their volume (spin-crossover systems, Mott insulators). Post-mortem analyses of the samples confirm permanent phase transition under specific experimental conditions. These innovative results open doors for a generic elastically driven cooperativity
Sperrin, Malcolm. „The dynamics of urolith fragmentation arising from laser induced high-intensity shock-waves“. Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396516.
Der volle Inhalt der QuelleBalugani, Sofia. „Structural and electronic properties of 3d metals up to Warm Dense Matter conditions“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX067.
Der volle Inhalt der QuelleThis PhD thesis studies iron (Fe) and copper (Cu) under extreme pressure and temperature conditions in collaboration with First Light Fusion (FLF), a company focused on developing nuclear fusion technology through inertial confinement (ICF). ICF compresses and heats the DT fuel to induce fusion. FLF uses metal capsules filled with DT fuel, requiring precise knowledge of the equations of state (EOS) of the materials. This thesis aimed to characterize the high pressure (P) and high temperature (T) of Fe and Cu, two metals used by FLF. The study explored thermodynamic states down to the warm dense matter (WDM) region for Fe and Cu, where the materials exhibit solid-state densities and wave-induced plasma temperatures produced with shock waves traveling at supersonic speeds. Fe is of interest to FLF given its role in stainless steel alloys. In parallel, Fe is important in geophysics for modeling planetary interiors, particularly for super-Earths with core pressures up to the TPa range. Despite extensive research, the high-pressure and high-temperature phase diagram of Fe, including its melting curve and bcc potential phase, remains controversial. Copper, a noble metal, is used as a flying or impactor during high-velocity impacts. Recent findings revealed a solid-solid phase transition in Cu from fcc to bcc at pressures above 180 GPa along the Hugoniot curve. The melting curve and phase boundary of Cu under multi-Mbar conditions remain unexplored. The experiments were carried out at the high-power laser facility of the European Synchrotron Radiation Facility (ESRF), using a high-power laser and an ID24 energy-dispersive (ED) X-ray absorption spectroscopy beamline (XAS). XAS provides information on the electronic structure and local ionic order of matter under extreme conditions. The pressure was measured with the Velocity Interferometer for Any Reflector (VISAR) system and applying the shock relations. Fe and Cu were compressed by laser shock, reaching conditions up to 270 GPa and 5800 K for Fe, and 300 GPa and 7185 K for Cu. The pressure is measured with the VISAR, but determining the temperature is difficult. In this work, the temperature could be extracted from the extended X-ray absorption fine structure (EXAFS), sensitive to local atomic order and thermal disorder, coupled with a temperature (Fe) model and simulations of DFT-molecular dynamics (DFT-MD) theory (Cu) for measuring temperatures under shock conditions. The Ifeffit package was used for Fe and a custom Python script for Cu, comparing experimental data with DFT-MD simulations from CEA Bruyères le Chatel. The FEFF software played a crucial role in identifying crystalline phases in Fe and Cu, taking into account atomic coordinates in solid phases and vibrational dynamics in liquid phases under high pressures. Solid-solid and solid-liquid phase transitions could be probed, allowing new constraints to be added to the high-pressure and high-temperature phase diagram of these metals. Temperature was extracted from EXAFS oscillations combined with models in conditions as extreme as those along the Hugoniot curve and represents a new and promising alternative method. Finally, our results highlight a different evolution of the electronic structure of these two metals under dynamic compression which have to be investigated more because the theory correctly predicts the trend, but overestimates the behavior
Sasoh, A., T. Ohtani und K. Mori. „Pressure Effect in a Shock-Wave–Plasma Interaction Induced by a Focused Laser Pulse“. American Physical Society, 2006. http://hdl.handle.net/2237/8852.
Der volle Inhalt der QuelleNikitine, Dmitri. „Optical and X-Ray Diagnostics of the Formation of Laser-Induced Plasmas in Gases and Vacuum“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401345.
Der volle Inhalt der QuelleTahan, Gilles. „Étude des assemblages collés sous choc - Propriétés mécaniques après choc laser“. Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2018. http://www.theses.fr/2018ENTA0014.
Der volle Inhalt der QuelleThe study presented follows on from the work carried out during different projects in different laboratories concerning the development of a laser shock adhesion test. The goal is to develop a method for evaluating the mechanical properties after laser impact of a bonded assembly. It will therefore not be a question of evaluating a level of adhesion using laser shock, but of considering and evaluating the possible influence of a laser shock on the mechanical properties of an assembly. This study therefore only concerns healthy assemblies, the mechanical properties of which should be evaluated before and after impact, for different amplitudes in the usual pressure range of the LASAT method (LASer Adhesion Test). This characterization of assemblies involves the choice of a method suitable for adhesive joints, capable of taking into account the specificities linked to the geometry of the substrate, but also of generating a desired stress field. The method adopted is the ARCAN mechanical test, capable of evaluating the resistance of a bonded assembly under quasi-static stresses, in tension, in shear or mixed. In addition, the ARCAN test allows the identification of behavioral laws of adhesive joints. Likewise, it is possible to characterize the composite lamellae in their out-of-plane behavior. This work was carried out at Institut de Recherche Dupuy de Lôme (IRDL), on ENSTA Bretagne site (Brest), in partnership with Engie Ineo whose activity, the construction of radomes in composite materials, is concerned with questions of control of bonded assemblies. This work was also the occasion of a collaboration with the CEA DAM DIF which made available ESTHER laser - material interaction simulation code
Sutton, Darren James. „Laser induced fluorescence studies of melecular species in a high temperature, hypervelocity flow“. Phd thesis, 1995. http://hdl.handle.net/1885/138855.
Der volle Inhalt der QuelleAlizadeh, Mohsen. „Experimental investigation of shock wave - bubble interaction“. Doctoral thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B4C2-3.
Der volle Inhalt der QuelleSöhnholz, Hendrik. „Temperatureffekte bei der lasererzeugten Kavitation“. Doctoral thesis, 2016. http://hdl.handle.net/11858/00-1735-0000-0023-3E00-F.
Der volle Inhalt der QuelleBuchteile zum Thema "Laser-Induced shock waves"
Yu, X. L., T. Ohtani, A. Sasoh, S. Kim, N. Urabe und I. S. Jeung. „Impulse characteristics of laser-induced blast wave in monoatomic gases“. In Shock Waves, 979–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_149.
Der volle Inhalt der QuelleStarke, R., und P. Roth. „Laser-induced-incandescence (LII) for particle sizing behind shock waves“. In Shock Waves, 347–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_50.
Der volle Inhalt der QuelleMariani, C., G. Jourdan, L. Houas und L. Schwaederlé. „Hot wire, laser Doppler measurements and visualization of shock induced turbulent mixing zones“. In Shock Waves, 1181–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85181-3_62.
Der volle Inhalt der QuelleOhki, T., A. Nakagawa, J. Sato, H. Jokura, T. Hirano, Y. Sato, H. Uenohara, M. Sun, T. Tominaga und K. Takayama. „Experimental application of pulsed Ho:YAG laser-induced liquid jet for neuroendoscopic hematoma removal“. In Shock Waves, 1279–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_198.
Der volle Inhalt der QuelleAndresen, P., W. H. Beck, G. Eitelberg, H. Hippler, T. J. McIntyre, A. Riedl, T. Seelemann und J. Troe. „A laser induced fluorescence system for the high enthalpy shock tunnel (HEG) in Göttingen“. In Shock Waves, 657–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9_103.
Der volle Inhalt der QuelleMizukaki, T. „Application of laser-induced thermal acoustics to temperature measurement of the air behind shock waves“. In Shock Waves, 427–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_68.
Der volle Inhalt der QuelleSato, J., A. Nakagawa, T. Saito, T. Hirano, T. Ohki, H. Uenohara, K. Takayama und T. Tominaga. „Development of Ho: YAG laser-induced cavitational shock wave generator for endoscopic shock wave exposure“. In Shock Waves, 737–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_110.
Der volle Inhalt der QuelleFukui, Toshihide, George T. Oshima und Toshi Fujiwara. „Unsteady Nonequilibrium Model of a Laser-Induced Blast Wave“. In Shock Waves @ Marseille IV, 413–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79532-9_68.
Der volle Inhalt der QuellePrat, Ch, und M. Autric. „High-Power Laser Radiation-Induced Shock Waves in Solids“. In Shock Waves @ Marseille III, 255–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78835-2_43.
Der volle Inhalt der QuelleHouas, L., und G. Jourdan. „An investigation of shock induced gas mixing in a large cross section shock tube with a laser sheet technique“. In Shock Waves, 335–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_48.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Laser-Induced shock waves"
Rastegari, Ali, und Jean-Claude Diels. „Investigation of Shock-waves Generated by Laser-induced Discharges Triggered by UV Filaments“. In CLEO: Fundamental Science, FW3C.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3c.5.
Der volle Inhalt der QuelleTittmann, B. R., L. J. Graham und R. Linebarger. „Laser-Induced Acoustic Shock Waves“. In IEEE 1987 Ultrasonics Symposium. IEEE, 1987. http://dx.doi.org/10.1109/ultsym.1987.199130.
Der volle Inhalt der QuelleUhlenbusch, J., und W. Viöl. „Multikilohertz repetition rate laser-induced plasma in hydrogen“. In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39422.
Der volle Inhalt der QuelleMaeno, K., S. Yokoyama und Y. Hanaoka. „Study on laser-induced cavitation bubbles in cryogenic liquids“. In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39513.
Der volle Inhalt der QuelleLeela, Ch, V. Rakesh Kumar, Surya P. Tewari und P. Prem Kiran. „Laser-induced shock waves from structured surfaces“. In SPIE Photonics Europe, herausgegeben von Thomas Graf, Jacob I. Mackenzie, Helena Jelínková und John Powell. SPIE, 2012. http://dx.doi.org/10.1117/12.921626.
Der volle Inhalt der QuelleLi, Xin-Zen, Zhi-Ping Tang, Gunag-Quan Zhou und Sheng-Bin Lin. „Thermal effects in laser induced strong shock waves“. In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46303.
Der volle Inhalt der QuelleEliezer, S., Z. Henis und Y. Paiss. „Phase transitions in subnanosecond laser induced shock waves“. In The 11th international workshop on laser interaction and related plasma phenomena. AIP, 1994. http://dx.doi.org/10.1063/1.46947.
Der volle Inhalt der QuelleSenecha, V. K., H. C. Pant und Buddhi K. Godwal. „Shock pressure enhancement in plane-layered targets through laser induced shock waves“. In ECLIM 2002: 27th European conference on Laser Interaction with Matter, herausgegeben von Oleg N. Krokhin, Sergey Y. Gus'kov und Yury A. Merkul'ev. SPIE, 2003. http://dx.doi.org/10.1117/12.535938.
Der volle Inhalt der QuelleGu, Z., M. Perton, S. E. Kruger, A. Blouin, D. Lévesque, J. P. Monchalin, A. Johnston et al. „LASER INDUCED SHOCK WAVES FOR COMPOSITES ADHESIVE BOND TESTING“. In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION VOLUME 29. AIP, 2010. http://dx.doi.org/10.1063/1.3362407.
Der volle Inhalt der QuelleHuang, Li, Yanqiang Yang, Yinghui Wang, Pengcheng Jin, Zhiren Zheng und Wenhui Su. „Ultrafast microscopy of shock waves induced by femtosecond laser“. In 27th International congress on High-Speed Photography and Photonics, herausgegeben von Xun Hou, Wei Zhao und Baoli Yao. SPIE, 2007. http://dx.doi.org/10.1117/12.725164.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Laser-Induced shock waves"
Lu, Yongfeng. DTPH56-14-S-N000006 Laser Peening for Preventing Pipe Corrosion and Failure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2017. http://dx.doi.org/10.55274/r0011992.
Der volle Inhalt der QuelleHart, Carl, Gregory Lyons und Michael White. Spherical shock waveform reconstruction by heterodyne interferometry. Engineer Research and Development Center (U.S.), Mai 2024. http://dx.doi.org/10.21079/11681/48471.
Der volle Inhalt der QuelleHart, Carl R., und Gregory W. Lyons. A Measurement System for the Study of Nonlinear Propagation Through Arrays of Scatterers. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38621.
Der volle Inhalt der Quelle