Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Laser communication systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Laser communication systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Laser communication systems"
Ke, Qiang. „Numerical Simulation of Chaotic Laser Secure Communication“. Advanced Materials Research 798-799 (September 2013): 570–73. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.570.
Der volle Inhalt der QuellePengyuan Chang, Pengyuan Chang, Tiantian Shi Tiantian Shi, Shengnan Zhang Shengnan Zhang, Haosen Shang Haosen Shang, Duo Pan Duo Pan und Jingbiao Chen Jingbiao Chen. „Faraday laser at Rb 1529 nm transition for optical communication systems“. Chinese Optics Letters 15, Nr. 12 (2017): 121401. http://dx.doi.org/10.3788/col201715.121401.
Der volle Inhalt der QuelleZeng Fengjiao, 曾凤娇, 杨康建 Yang Kangjian, 晏旭 Yan Xu, 赵孟孟 Zhao Mengmeng, 杨平 Yang Ping und 文良华 Wen Lianghua. „Research Progress on Underwater Laser Communication Systems“. Laser & Optoelectronics Progress 58, Nr. 3 (2021): 0300002–30000226. http://dx.doi.org/10.3788/lop202158.0300002.
Der volle Inhalt der QuelleCai, Chengkun, und Jian Wang. „Femtosecond Laser-Fabricated Photonic Chips for Optical Communications: A Review“. Micromachines 13, Nr. 4 (16.04.2022): 630. http://dx.doi.org/10.3390/mi13040630.
Der volle Inhalt der QuelleStrakhov, S. Yu, A. V. Trilis und N. V. Sotnikova. „Specifics of transmitting telescopes for laser communication systems“. Journal of Optical Technology 88, Nr. 5 (01.05.2021): 264. http://dx.doi.org/10.1364/jot.88.000264.
Der volle Inhalt der QuelleGiuliano, Giovanni, Leslie Laycock, Duncan Rowe und Anthony E. Kelly. „Solar rejection in laser based underwater communication systems“. Optics Express 25, Nr. 26 (20.12.2017): 33066. http://dx.doi.org/10.1364/oe.25.033066.
Der volle Inhalt der QuelleMoatlhodi, Ogomoditse O., Nonofo M. J. Ditshego und Ravi Samikannu. „Vertical Cavity Surface Emitting Lasers as Sources for Optical Communication Systems: A Review“. Journal of Nano Research 65 (Dezember 2020): 51–96. http://dx.doi.org/10.4028/www.scientific.net/jnanor.65.51.
Der volle Inhalt der QuelleNiu, Shen, Yue Song, Ligong Zhang, Yongyi Chen, Lei Liang, Ye Wang, Li Qin et al. „Research Progress of Monolithic Integrated DFB Laser Arrays for Optical Communication“. Crystals 12, Nr. 7 (21.07.2022): 1006. http://dx.doi.org/10.3390/cryst12071006.
Der volle Inhalt der QuelleDmytryszyn, Mark, Matthew Crook und Timothy Sands. „Preparing for Satellite Laser Uplinks and Downlinks“. Sci 2, Nr. 1 (18.03.2020): 16. http://dx.doi.org/10.3390/sci2010016.
Der volle Inhalt der QuelleLaksono, Pranoto Budi. „A STUDY OF THE INFLUENCE OF 650 nm LASER INTERFERENCE ON VISIBLE LASER LIGHT COMMUNICATION SYSTEM“. TEKNOKOM 4, Nr. 2 (01.09.2021): 60–65. http://dx.doi.org/10.31943/teknokom.v4i2.66.
Der volle Inhalt der QuelleDissertationen zum Thema "Laser communication systems"
Sabala, Ryan J. „Satellite Attitude Determination Using Laser Communication Systems“. Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1218636153.
Der volle Inhalt der QuelleSofka, Jozef. „New generation of gimbals systems for aerospace applications“. Diss., Online access via UMI:, 2007.
Den vollen Inhalt der Quelle findenQureshi, Zihad. „Vertical cavity surface emitting lasers in high speed optical data communications“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608126.
Der volle Inhalt der QuelleBar, Siman Tov Omar. „Adaptive optimization of a free-space laser communication system under dynamic link attenuation“. Diss., Online access via UMI:, 2009.
Den vollen Inhalt der Quelle findenIncludes bibliographical references.
Bonk, Scott S. „The use of point-to-point lasers for navy ships“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FBonk.pdf.
Der volle Inhalt der QuelleTimus, Oguzhan. „Free space optic communication for Navy surface ship platforms“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FTimus.pdf.
Der volle Inhalt der QuelleZhu, Benyuan. „Multichannel grating cavity laser for optically multiplexed communication systems“. Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320438.
Der volle Inhalt der QuelleLee, Myron S. M. Massachusetts Institute of Technology. „Optomechanical and wavelength alignments of CubeSat laser communication Systems“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112470.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 97-100).
While the introduction of CubeSats has enabled the scientific, commercial, and governmental communities to launch space missions more quickly at lower costs, the communication subsystems of the platform are limited by a heavily regulated and overcrowded RF spectrum. Scientific instruments with increasing capabilities on CubeSats are generating massive amounts of data and are quickly pushing the boundaries of the data rates of current RF communication systems. An alternative to the traditional RF communication system is the free space optical (FSO) communication system. With higher power efficiency, FSO communication, or lasercom, can potentially provide higher data rates using less power and also avoid the RF spectrum regulatory process. MIT's Nanosatellite Optical Downlink Experiment (NODE) is an effort to demonstrate low cost and high speed optical downlink from LEO for CubeSats, and this thesis focuses on alignments in the optomechanical system and transmitter system of the NODE payload. First, simulation and analyses are performed on an optomechanical model of NODE to study the effects potential misalignments of hardware components can have on the overall system. Second, we present an autonomous optimization algorithm that monitors the conditions of the transmitter system and compensates for wavelength misalignments between the transmitter optical components caused by variations in the thermal environment.
by Myron Lee.
S.M.
Johnson, Peter Thomas. „Spectral correlation of semiconductor laser“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385428.
Der volle Inhalt der QuelleHill, Timothy J. „Interference of intensity noise in a multimode Nd:YAG laser“. Title page, abstract and contents only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phh6484.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Laser communication systems"
1923-, Katzman Morris, Hrsg. Laser satellite communications. Englewood Cliffs, NJ: Prentice-Hall, 1987.
Den vollen Inhalt der Quelle findenCoherent lightwave communication systems. Boston: Artech House, 1995.
Den vollen Inhalt der Quelle findenL, Casey William, Hrsg. Laser communications in space. Boston: Artech House, 1995.
Den vollen Inhalt der Quelle findenJ, Adams M., und Institution of Electrical Engineers, Hrsg. Semiconductor lasers for long-wavelength optical-fibre communications systems. London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1987.
Den vollen Inhalt der Quelle findenIntroduction to lightwave communication systems. Boston: Artech House, 1997.
Den vollen Inhalt der Quelle finden1959-, Voelz David George, Ricklin Jennifer Crider 1960- und Society of Photo-optical Instrumentation Engineers., Hrsg. Free-space laser communication and laser imaging: 30-31 July, 2001, San Diego, [Calif.]. Bellingham, Wash: SPIE, 2001.
Den vollen Inhalt der Quelle finden1959-, Voelz David George, Ricklin Jennifer Crider 1960- und Society of Photo-optical Instrumentation Engineers., Hrsg. Free-space laser communication and laser imaging II: 9-11 July, 2002, Seattle, Washington. Bellingham, Wash: SPIE, 2002.
Den vollen Inhalt der Quelle findenC, Ricklin Jennifer, Voelz David G und Society of Photo-optical Instrumentation Engineers., Hrsg. Free-space laser communication and laser imaging: 30-31 July, 2001, San Diego, California. Bellingham, Wash., USA: SPIE, 2002.
Den vollen Inhalt der Quelle findenE, Enstrom R., Longeway P. A und Langley Research Center, Hrsg. Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenE, Enstrom R., Longeway P. A und Langley Research Center, Hrsg. Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Laser communication systems"
Klotzkin, David J. „Laser Communication Systems I: Amplitude Modulated Systems“. In Introduction to Semiconductor Lasers for Optical Communications, 293–321. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24501-6_11.
Der volle Inhalt der QuelleAl-Ramli, F. K. „Optimum Receiver Structure and Filter Design for MPAM Optical Space Communication Systems“. In Laser in der Technik / Laser in Engineering, 192–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_35.
Der volle Inhalt der QuelleRaj, Utkarsh, Neha Nidhi und Vijay Nath. „Automated Toll Plaza Using Barcode-Laser Scanning Technology“. In Nanoelectronics, Circuits and Communication Systems, 475–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0776-8_44.
Der volle Inhalt der QuelleMajumdar, Arun K. „Laser Satellite Communications: Fundamentals, Systems, Technologies, and Applications“. In Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons, 63–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03972-0_3.
Der volle Inhalt der QuelleWatanabe, Kota, Takuto Koyama, Hiroshi Koga, Kiyotaka Izumi und Takeshi Tsujimura. „Tactical Alignment of Aerial Transmission Laser Beam for Free Space Optics Communication“. In Lecture Notes in Networks and Systems, 102–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14314-4_10.
Der volle Inhalt der QuelleJono, Shun, Takuto Koyama, Kota Watanabe, Kiyotaka Izumi und Takeshi Tsujimura. „Optical Simulations on Aerial Transmitting Laser Beam for Free Space Optics Communication“. In Advances in Networked-Based Information Systems, 59–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84913-9_6.
Der volle Inhalt der QuelleMajumdar, Arun K. „Laser-Based Satellite and Inter-satellite Communication Systems: Advanced Technologies and Performance Analysis“. In Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons, 199–229. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03972-0_7.
Der volle Inhalt der QuelleMajumdar, Arun K. „Optical Laser Links in Space-Based Systems for Global Communications Network Architecture: Space/Aerial, Terrestrial, and Underwater Platforms“. In Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons, 97–128. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03972-0_4.
Der volle Inhalt der QuelleDudin, Alexander N., Valentina I. Klimenok und Vladimir M. Vishnevsky. „Mathematical Models and Methods of Investigation of Hybrid Communication Networks Based on Laser and Radio Technologies“. In The Theory of Queuing Systems with Correlated Flows, 241–306. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32072-0_5.
Der volle Inhalt der QuelleKlotzkin, David J. „Coherent Communication Systems“. In Introduction to Semiconductor Lasers for Optical Communications, 323–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24501-6_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Laser communication systems"
Giuliano, Giovanni, Shaun Viola, Scott Watson, Leslie Laycock, Duncan Rowe und Anthony E. Kelly. „Laser based underwater communication systems“. In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550382.
Der volle Inhalt der QuelleHamilton, S. A., R. S. Bondurant, D. M. Boroson, J. W. Burnside, D. O. Caplan, E. A. Dauler, A. S. Fletcher et al. „Long-Haul Atmospheric Laser Communication Systems§“. In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ofc.2011.owx2.
Der volle Inhalt der QuelleGaraymovich, Nicolay P., Vladimir N. Grigoriev, Alexander P. Huppenen, Michael A. Sadovnikov, Victor D. Shargorodsky und Victor V. Sumerin. „Free-space laser communication systems: internationally and in Russia“. In Laser Optics 2000, herausgegeben von Serguei A. Gurevich und Nikolay N. Rosanov. SPIE, 2001. http://dx.doi.org/10.1117/12.418827.
Der volle Inhalt der QuelleRoberts, Lewis C. „Satellite Laser Communication and Adaptive Optics“. In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/aoms.2020.jw4g.1.
Der volle Inhalt der QuelleChen, Yan, und Tianzhi Yao. „Laser Communication Theorem and New Communication Engineering Revolution“. In ICAIIS 2021: 2021 2nd International Conference on Artificial Intelligence and Information Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469213.3471323.
Der volle Inhalt der QuelleHacker, G. „Homodyne Detection for Optical Space Communications“. In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.thb1.
Der volle Inhalt der QuelleBagrov, Alexander V., und Vladimir P. Lukin. „Laser optical communication systems with space transmitters“. In SPIE Proceedings, herausgegeben von Gelii A. Zherebtsov und Gennadii G. Matvienko. SPIE, 2006. http://dx.doi.org/10.1117/12.675242.
Der volle Inhalt der QuelleShubert, Paul D. „Atmospheric fade probability in moderate aperture laser communication systems“. In Free-Space Laser Communications XXXI, herausgegeben von Hamid Hemmati und Don M. Boroson. SPIE, 2019. http://dx.doi.org/10.1117/12.2508069.
Der volle Inhalt der QuelleChristopher, Paul. „Climate Satellites with Laser Communication Links“. In 28th AIAA International Communications Satellite Systems Conference (ICSSC-2010). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-8849.
Der volle Inhalt der QuelleCarlson, N. W., G. A. Evans, D. P. Bour und S. K. Liew. „Applications of surface-emitting lasers to coherent communication systems“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tul6.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Laser communication systems"
Ruggiero, A., und A. Orgren. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1389996.
Der volle Inhalt der QuelleGibson, Steve, und Tsu-Chin Tsao. Control, Filtering and System Identification for High Energy Lasers and Laser Communications. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada565747.
Der volle Inhalt der QuelleWilkins, Gary D. Eye-Safe 2-Micron Laser Communications System. Fort Belvoir, VA: Defense Technical Information Center, Januar 1996. http://dx.doi.org/10.21236/ada309907.
Der volle Inhalt der QuelleTaylor, Johnny A., Allen D. Pillsbury und Don M. Boroson. Space Qualification for an Intersatellite Laser Communications System. Fort Belvoir, VA: Defense Technical Information Center, März 1993. http://dx.doi.org/10.21236/ada265145.
Der volle Inhalt der QuelleWilkins, Gary D. Atmospheric Transverse Coherence Length Measurement System for Laser Communications. Fort Belvoir, VA: Defense Technical Information Center, Februar 1993. http://dx.doi.org/10.21236/ada263563.
Der volle Inhalt der QuelleBourrier, Mathilde, Michael Deml und Farnaz Mahdavian. Comparative report of the COVID-19 Pandemic Responses in Norway, Sweden, Germany, Switzerland and the United Kingdom. University of Stavanger, November 2022. http://dx.doi.org/10.31265/usps.254.
Der volle Inhalt der QuelleChapman, Ray, Phu Luong, Sung-Chan Kim und Earl Hayter. Development of three-dimensional wetting and drying algorithm for the Geophysical Scale Transport Multi-Block Hydrodynamic Sediment and Water Quality Transport Modeling System (GSMB). Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41085.
Der volle Inhalt der QuelleAtkinson, Dan, und Alex Hale, Hrsg. From Source to Sea: ScARF Marine and Maritime Panel Report. Society of Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.126.
Der volle Inhalt der QuelleRankin, Nicole, Deborah McGregor, Candice Donnelly, Bethany Van Dort, Richard De Abreu Lourenco, Anne Cust und Emily Stone. Lung cancer screening using low-dose computed tomography for high risk populations: Investigating effectiveness and screening program implementation considerations: An Evidence Check rapid review brokered by the Sax Institute (www.saxinstitute.org.au) for the Cancer Institute NSW. The Sax Institute, Oktober 2019. http://dx.doi.org/10.57022/clzt5093.
Der volle Inhalt der Quelle