Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Large-Scales.

Zeitschriftenartikel zum Thema „Large-Scales“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Large-Scales" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Raccanelli, Alvise. „Testing gravity on Large Scales“. EPJ Web of Conferences 58 (2013): 02013. http://dx.doi.org/10.1051/epjconf/20135802013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Drinkwater, M. „Quasar clustering on large scales“. Monthly Notices of the Royal Astronomical Society 235, Nr. 4 (01.12.1988): 1111–20. http://dx.doi.org/10.1093/mnras/235.4.1111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Maddox, S. J., G. Efstathiou, W. J. Sutherland und J. Loveday. „Galaxy correlations on large scales“. Monthly Notices of the Royal Astronomical Society 242, Nr. 1 (01.02.1990): 43P—47P. http://dx.doi.org/10.1093/mnras/242.1.43p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Efstathiou, G. „Galaxy clustering on large scales.“ Proceedings of the National Academy of Sciences 90, Nr. 11 (01.06.1993): 4859–66. http://dx.doi.org/10.1073/pnas.90.11.4859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mo, H. J., und L. Z. Fang. „Quasar clustering on large scales“. Astrophysical Journal 410 (Juni 1993): 493. http://dx.doi.org/10.1086/172766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Beswick, K. M., T. W. Simpson, D. Fowler, T. W. Choularton, M. W. Gallagher, K. J. Hargreaves, M. A. Sutton und A. Kaye. „Methane emissions on large scales“. Atmospheric Environment 32, Nr. 19 (Oktober 1998): 3283–91. http://dx.doi.org/10.1016/s1352-2310(98)00080-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Martínez, Vicent J. „(Non-)fractality on Large Scales“. Symposium - International Astronomical Union 201 (2005): 168–77. http://dx.doi.org/10.1017/s0074180900216239.

Der volle Inhalt der Quelle
Annotation:
The debate about the possible smoothness of the Universe on large scales as opposed to an unbounded fractal hierarchy has been the subject of increasing interest in recent years. The controversy arises as a consequence of different statistical analyses performed on surveys of galaxy redshifts. I review the observational evidence supporting the idea that a gradual transition occurs in the galaxy distribution: from a fractal regime at small scales to large scale homogeneity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wegner, Gary. „Gravity tested on large scales“. Nature 477, Nr. 7366 (September 2011): 541–43. http://dx.doi.org/10.1038/477541a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Maurer, Brian A. „Ecology and Evolution at Large Scales“. Ecology 84, Nr. 12 (Dezember 2003): 3405–6. http://dx.doi.org/10.1890/0012-9658(2003)084[3405:eaeals]2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

RUDNICK, LAWRENCE. „OBSERVING MAGNETIC FIELDS ON LARGE SCALES“. Journal of The Korean Astronomical Society 37, Nr. 5 (01.12.2004): 329–35. http://dx.doi.org/10.5303/jkas.2004.37.5.329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Muriel, Hernan, und Diego G. Lambas. „Alignments and filaments on large scales“. Astronomical Journal 98 (Dezember 1989): 1995. http://dx.doi.org/10.1086/115273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zawadowski, A. G., J. Kertész und G. Andor. „Large price changes on small scales“. Physica A: Statistical Mechanics and its Applications 344, Nr. 1-2 (Dezember 2004): 221–26. http://dx.doi.org/10.1016/j.physa.2004.06.121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Oberhuber, Josef M., Michael Herzog, Hans-F. Graf und Karsten Schwanke. „Volcanic plume simulation on large scales“. Journal of Volcanology and Geothermal Research 87, Nr. 1-4 (Dezember 1998): 29–53. http://dx.doi.org/10.1016/s0377-0273(98)00099-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Schroder, Rasmus R., Holger Blank, Andreas Schertel, Marlene Thaler, Alexander Orchowski und Irene Wacker. „Correlative large volume imaging across scales“. Microscopy and Microanalysis 21, S3 (August 2015): 415–16. http://dx.doi.org/10.1017/s1431927615002871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Martinez-Vazquez, P., und M. Sterling. „Predicting wheat lodging at large scales“. Biosystems Engineering 109, Nr. 4 (August 2011): 326–37. http://dx.doi.org/10.1016/j.biosystemseng.2011.04.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Michel, Patrik. „Prehospital Scales for Large Vessel Occlusion“. Stroke 48, Nr. 2 (Februar 2017): 247–49. http://dx.doi.org/10.1161/strokeaha.116.015511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Pouquet, A., R. Marino, P. D. Mininni und D. Rosenberg. „Dual constant-flux energy cascades to both large scales and small scales“. Physics of Fluids 29, Nr. 11 (November 2017): 111108. http://dx.doi.org/10.1063/1.5000730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Doroshkevich, A. G., und A. A. Klypin. „Perturbations and streaming motions on large scales“. Monthly Notices of the Royal Astronomical Society 235, Nr. 3 (Dezember 1988): 865–74. http://dx.doi.org/10.1093/mnras/235.3.865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Lum, Ka, David Chandler und John D. Weeks. „Hydrophobicity at Small and Large Length Scales“. Journal of Physical Chemistry B 103, Nr. 22 (Juni 1999): 4570–77. http://dx.doi.org/10.1021/jp984327m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tesloianu, Dan, Vlad Ghizdovăţ, Irina Butuc, Constantin Grecea, Liliana Rosemarie Manea, Viorel Puiu-Păun, Maricel Agop und Cipriana Ştefănescu. „Structure Coherence at Small and Large Scales“. Journal of Computational and Theoretical Nanoscience 12, Nr. 12 (01.12.2015): 5587–92. http://dx.doi.org/10.1166/jctn.2015.4687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Brodrick, P. G., L. D. L. Anderegg und G. P. Asner. „Forest Drought Resistance at Large Geographic Scales“. Geophysical Research Letters 46, Nr. 5 (März 2019): 2752–60. http://dx.doi.org/10.1029/2018gl081108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Richter, D. „Polymer dynamics from large to small scales“. Journal of Applied Crystallography 36, Nr. 3 (16.04.2003): 389–96. http://dx.doi.org/10.1107/s0021889803005053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ralph, Elise A. „Scales and structures of large lake eddies“. Geophysical Research Letters 29, Nr. 24 (Dezember 2002): 30–1. http://dx.doi.org/10.1029/2001gl014654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Kang, X., W. P. Lin, X. Dong, Y. O. Wang, A. Dutton und A. Macciò. „Galaxy alignment on large and small scales“. Proceedings of the International Astronomical Union 11, S308 (Juni 2014): 448–51. http://dx.doi.org/10.1017/s1743921316010346.

Der volle Inhalt der Quelle
Annotation:
AbstractGalaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mollerach, Silvia, Diego Harari und Esteban Roulet. „Large scales anisotropies of extragalactic cosmic rays“. Nuclear and Particle Physics Proceedings 273-275 (April 2016): 282–88. http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Guzzo, Luigi. „Is the universe homogeneous? (On large scales)“. New Astronomy 2, Nr. 6 (Dezember 1997): 517–32. http://dx.doi.org/10.1016/s1384-1076(97)00037-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Laing, R. A. „Large-Scale Structure: Jets on kiloparsec Scales“. Symposium - International Astronomical Union 175 (1996): 147–52. http://dx.doi.org/10.1017/s0074180900080360.

Der volle Inhalt der Quelle
Annotation:
This paper examines some of the consequences of the hypothesis that jets in all radio galaxies and quasars are relativistic on small scales, in the sense that the flow velocity >0.5c. This idea is suggested by a number of lines of evidence. Firstly, Unified Models (Urry & Padovani, 1995) imply that the relativistic motion required in core-dominated objects must also occur in a larger parent population consisting of most, if not all, extended sources. Secondly, superluminal motion is detected in the nuclei of extended sources and in the kpc-scale jet of M 87 (Hough, 1994; Biretta, Zhou & Owen, 1995). Thirdly, jets are one-sided in the same sense on pc and kpc scales; at all luminosities, the radio emission tends to become more symmetrical on larger scales, as expected if an initially relativistic flow decelerates (Bridle & Perley, 1984; Bridle et al., 1994a; Parma et al., 1994). Finally, depolarization asymmetry occurs in both low (Parma, de Ruiter & Fanti, 1996) and high (Laing, 1988; Garrington et al., 1988) luminosity sources: the implication is that the brighter jet is on the near side of the source. It is likely that the key difference between radio sources in the two morphological classes defined by Fanaroff & Riley (1974) are that relativistic flow persists to the extremities of FRII sources, but that FRI jets decelerate smoothly on intermediate scales (Laing, 1993; Bicknell, 1995). On kiloparsec scales, we can identify structures which we propose should be called fast jets. These are well-collimated and generally one-sided (in the sense that the jet/counterjet ratio >4:1). They also have longitudinal apparent magnetic field (B||). They occur both in FRII sources, and at the bases of FRI jets (Bridle & Perley, 1984). We suggest that they are relativistic flows, and that this fact is crucial to an understanding of their evolution. A framework for the understanding of the variety of extended structures in extragalactic radio sources in this context is illustrated in Figure 1, which is an improved version of the diagram presented by Laing (1993). A fast jet appears to be able to: decelerate and recollimate to form a slow jet with β << 1 (therefore two-sided unless external effects dominate); disrupt, as in wide-angle tail sources, or hit the external medium and form a hot-spot. Slow jets are probably formed only when a decelerating fast jet can be recollimated by the external pressure gradient (Phinney, 1983; Bowman, Leahy & Komissarov, 1995). This may not be possible for more powerful sources in flatter pressure gradients and it is likely that wide-angle tail sources are formed when a fast jet decelerates rapidly but cannot recollimate. Deceleration by entrainment is efficient when the jet is transonic, and Bicknell (1994) showed that this corresponds to β ≈0.3 − 0.7 for a relativistic jet. If the jet does not slow down sufficiently (e.g. by mass loading; Komissarov 1994), then the flow will remain supersonic until it impacts on the external medium, and an FRII source will result. The radio morphology is therefore determined by a combination of initial jet speed and thrust and the effects of the environment, via the rate of stellar mass loss and the pressure gradient. On the largest scales, a bridge(backflow) or tail (outflow) will be formed. If the jet remains supersonic as far as the end of the lobe (as in an FRII source), then it is inevitable that a backflow (bridge) will be generated. As emphasised by Parma, de Ruiter & Fanti (1996), the majority of FRI sources also show bridges: the residual momentum of the jets, their density contrast with the external medium and the external pressure gradient are all likely to be important in determining their large-scale morphologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bertoluzza, Silvia, und Silvia Falletta. „Building Wavelets on ]0,1[ at Large Scales“. Journal of Fourier Analysis and Applications 9, Nr. 3 (01.05.2003): 261–88. http://dx.doi.org/10.1007/s00041-003-0014-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Tavecchio, F. „Extragalactic jets on subpc and large scales“. Astrophysics and Space Science 311, Nr. 1-3 (26.07.2007): 247–55. http://dx.doi.org/10.1007/s10509-007-9546-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Liu, Chao, und Todd A. Oliynyk. „Cosmological Newtonian Limits on Large Spacetime Scales“. Communications in Mathematical Physics 364, Nr. 3 (26.07.2018): 1195–304. http://dx.doi.org/10.1007/s00220-018-3214-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Zhang, Xiang. „Metamaterials for perpetual cooling at large scales“. Science 355, Nr. 6329 (09.03.2017): 1023–24. http://dx.doi.org/10.1126/science.aam8566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wong, L. T., und C. L. Yau. „Sanitary Accommodation Scales for Large Shopping Malls“. Architectural Science Review 47, Nr. 4 (Dezember 2004): 355–64. http://dx.doi.org/10.1080/00038628.2000.9697545.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Brechet, Sylvain D., und Jean-Philippe Ansermet. „Heat-driven spin currents on large scales“. physica status solidi (RRL) - Rapid Research Letters 5, Nr. 12 (20.06.2011): 423–25. http://dx.doi.org/10.1002/pssr.201105180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

YAMAZAKI, Shojiro, und Sigeyasu KOBAYASHI. „Protein separation and purification. Small and large scales.“ Journal of Synthetic Organic Chemistry, Japan 46, Nr. 11 (1988): 1014–24. http://dx.doi.org/10.5059/yukigoseikyokaishi.46.1014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Zhang, Heling, Yonglu Ren und Guangyong Zhang. „Super Large Scales Reflection Hologram on Dichromated Gelatin.“ Journal of Photopolymer Science and Technology 9, Nr. 1 (1996): 131–36. http://dx.doi.org/10.2494/photopolymer.9.131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Duniya, Didam G. A., Teboho Moloi, Chris Clarkson, Julien Larena, Roy Maartens, Bishop Mongwane und Amanda Weltman. „Probing beyond-Horndeski gravity on ultra-large scales“. Journal of Cosmology and Astroparticle Physics 2020, Nr. 01 (14.01.2020): 033. http://dx.doi.org/10.1088/1475-7516/2020/01/033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Sanders, Wendy, Carolyn Judge, Eric Winkel, Steven Ceccio, David Dowling und Marc Perlin. „Turbulent boundary layer pressure fluctuations at large scales“. Journal of the Acoustical Society of America 111, Nr. 5 (2002): 2425. http://dx.doi.org/10.1121/1.4778293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Amendola, Luca, Ana Marta Pinho und Santiago Casas. „Model-independent measures of gravity at large scales“. International Journal of Modern Physics A 33, Nr. 31 (10.11.2018): 1844022. http://dx.doi.org/10.1142/s0217751x18440220.

Der volle Inhalt der Quelle
Annotation:
This paper aims at showing how to probe gravity in a model independent way using observable quantities which can be measured with the minimum number of assumptions. We find that it is possible to estimate the gravitational slip, defined as the ratio of the gravitational potentials, independently of assumptions concerning initial conditions, bias, and other cosmological parameters. Analyzing all the data currently available, we find [Formula: see text] in the redshift range [Formula: see text]. Future datasets, like those provided by the Euclid satellite, will tighten this constraint by more than an order of magnitude.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Pápai, Péter, und Ravi K. Sheth. „On the anisotropic density distribution on large scales“. Monthly Notices of the Royal Astronomical Society 429, Nr. 2 (07.12.2012): 1133–38. http://dx.doi.org/10.1093/mnras/sts399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Valsesia, Diego, Giulio Coluccia, Tiziano Bianchi und Enrico Magli. „ToothPic: Camera-Based Image Retrieval on Large Scales“. IEEE MultiMedia 26, Nr. 2 (01.04.2019): 33–43. http://dx.doi.org/10.1109/mmul.2018.2873845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Damschen, E. I. „Corridors Increase Plant Species Richness at Large Scales“. Science 313, Nr. 5791 (01.09.2006): 1284–86. http://dx.doi.org/10.1126/science.1130098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Antoniadis, Ignatios, Pawel O. Mazur und Emil Mottola. „Fractal geometry of quantum spacetime at large scales“. Physics Letters B 444, Nr. 3-4 (Dezember 1998): 284–92. http://dx.doi.org/10.1016/s0370-2693(98)01375-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Luo, Shan, und Ethan T. Vishniac. „Can Extra Power Explain Periodicity on Large Scales?“ Astrophysical Journal 415 (Oktober 1993): 450. http://dx.doi.org/10.1086/173177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Delsink, Audrey, Abi T. Vanak, Sam Ferreira und Rob Slotow. „Biologically relevant scales in large mammal management policies“. Biological Conservation 167 (November 2013): 116–26. http://dx.doi.org/10.1016/j.biocon.2013.07.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Del Aguila, F., und G. D. Coughlan. „Very large intermediate scales in three-generation models“. Physics Letters B 215, Nr. 1 (Dezember 1988): 93–98. http://dx.doi.org/10.1016/0370-2693(88)91077-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Shen, Hubert H. „Non-solenoidal large scales in mean-incompressible turbulence“. Physica D: Nonlinear Phenomena 37, Nr. 1-3 (Juli 1989): 192–99. http://dx.doi.org/10.1016/0167-2789(89)90128-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Laurance, William F. „Do edge effects occur over large spatial scales?“ Trends in Ecology & Evolution 15, Nr. 4 (April 2000): 134–35. http://dx.doi.org/10.1016/s0169-5347(00)01838-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Liske, J. „A hypothetical cosmological test: Trigonometry on large scales“. Astronomy & Astrophysics 398, Nr. 2 (21.01.2003): 429–33. http://dx.doi.org/10.1051/0004-6361:20021494.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Valiela, Ivan. „Suitably Large Scales for Study of Marine Ecosystems“. Ecology 71, Nr. 5 (Oktober 1990): 2031. http://dx.doi.org/10.2307/1937616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Lu, Zhiping, Ming Li und Wei Zhao. „Normality of Ethernet Traffic at Large Time Scales“. Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/471963.

Der volle Inhalt der Quelle
Annotation:
We contribute the quantitative descriptions of the large time scales for the Ethernet traffic to be Gaussian. We focus on the normality property of the accumulated traffic data under different time scales. The investigation is carried out graphically by the quantile-quantile (QQ) plots and numerically by statistical tests. The present results indicate that the larger the time scale, the more normal the Ethernet traffic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie