Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Large-Scales“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Large-Scales" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Large-Scales"
Raccanelli, Alvise. „Testing gravity on Large Scales“. EPJ Web of Conferences 58 (2013): 02013. http://dx.doi.org/10.1051/epjconf/20135802013.
Der volle Inhalt der QuelleDrinkwater, M. „Quasar clustering on large scales“. Monthly Notices of the Royal Astronomical Society 235, Nr. 4 (01.12.1988): 1111–20. http://dx.doi.org/10.1093/mnras/235.4.1111.
Der volle Inhalt der QuelleMaddox, S. J., G. Efstathiou, W. J. Sutherland und J. Loveday. „Galaxy correlations on large scales“. Monthly Notices of the Royal Astronomical Society 242, Nr. 1 (01.02.1990): 43P—47P. http://dx.doi.org/10.1093/mnras/242.1.43p.
Der volle Inhalt der QuelleEfstathiou, G. „Galaxy clustering on large scales.“ Proceedings of the National Academy of Sciences 90, Nr. 11 (01.06.1993): 4859–66. http://dx.doi.org/10.1073/pnas.90.11.4859.
Der volle Inhalt der QuelleMo, H. J., und L. Z. Fang. „Quasar clustering on large scales“. Astrophysical Journal 410 (Juni 1993): 493. http://dx.doi.org/10.1086/172766.
Der volle Inhalt der QuelleBeswick, K. M., T. W. Simpson, D. Fowler, T. W. Choularton, M. W. Gallagher, K. J. Hargreaves, M. A. Sutton und A. Kaye. „Methane emissions on large scales“. Atmospheric Environment 32, Nr. 19 (Oktober 1998): 3283–91. http://dx.doi.org/10.1016/s1352-2310(98)00080-6.
Der volle Inhalt der QuelleMartínez, Vicent J. „(Non-)fractality on Large Scales“. Symposium - International Astronomical Union 201 (2005): 168–77. http://dx.doi.org/10.1017/s0074180900216239.
Der volle Inhalt der QuelleWegner, Gary. „Gravity tested on large scales“. Nature 477, Nr. 7366 (September 2011): 541–43. http://dx.doi.org/10.1038/477541a.
Der volle Inhalt der QuelleMaurer, Brian A. „Ecology and Evolution at Large Scales“. Ecology 84, Nr. 12 (Dezember 2003): 3405–6. http://dx.doi.org/10.1890/0012-9658(2003)084[3405:eaeals]2.0.co;2.
Der volle Inhalt der QuelleRUDNICK, LAWRENCE. „OBSERVING MAGNETIC FIELDS ON LARGE SCALES“. Journal of The Korean Astronomical Society 37, Nr. 5 (01.12.2004): 329–35. http://dx.doi.org/10.5303/jkas.2004.37.5.329.
Der volle Inhalt der QuelleDissertationen zum Thema "Large-Scales"
Drinkwater, Michael John. „Quasar clustering on large scales“. Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330222.
Der volle Inhalt der QuelleFrith, William James. „The clustering of galaxies on large scales“. Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2390/.
Der volle Inhalt der QuelleCarmona, Loaiza Juan Manuel. „AGN fuelling: bridging large and small scales“. Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/3887.
Der volle Inhalt der QuelleFeldman, Richard. „Toward a theory of abundance at large spatial scales“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104707.
Der volle Inhalt der QuelleL'écologie est l'étude de la diversité, des distributions et des abondances des organismes vivants. Les avancées technologiques récentes couplées à une expansion des objets de recherche ont permis à une étude approfondie de la variation de ces deux premières propriétés sur de très grandes échelles spatiales. Les variations en abondance sont, quant à elles, peu documentées aux grandes échelles spatiales et les développements théoriques correspondant restent limités. Il existe pourtant un pattern prévalent : une espèce donnée est généralement abondante dans une partie extrêmement réduite de sa zone géographique et rare partout ailleurs. Cette observation est aujourd'hui communément expliquée par une variation environnementale sous-jacente. Cette thèse s'appuie sur des approches à la fois empiriques et expérimentales, statistiques et théoriques pour tester le type de variation environnementale ainsi que les interactions entre environnement et compétition interspécifique pouvant générer les variations spatiales en abondances observées. Il est montré que présence-absence et abondance sont affectées par des facteurs environnementaux distincts. Il apparaît en outre que l'effet de la compétition interspécifique dépend des différences de niches entre espèces et module l'impact de l'environnement sur l'abondance en modifiant des coûts et bénéfices relatifs des différentes stratégies d'acquisition des ressources. Finalement, la possibilité de prédire les réponses aux changements climatiques grâce aux données d'abondance et à des modèles statistiques minimisant le bruit inhérent à ce type de données est démontrée. Pour autant, une véritable théorie des distributions d'abondance reste à développer. Le nombre, et a fortiori l'identité, des gradients environnements affectant les abondances à grande échelle spatiale sont encore mal connus. Un effort de recherche considérable est ainsi nécessaire pour améliorer la compréhension du lien entre phénomènes locaux, dont l'interaction entre environnement, traits, comportement et compétition, et patterns à grandes échelles. Par ailleurs, l'unification entre approches basées sur la dispersion, négligeant les différences de niches, avec la théorie actuelle doit encore être accomplie pour qu'une véritable théorie générale des dynamiques macro-évolutive et patterns macro-écologiques puisse voir le jour.
Javanmardi, Behnam [Verfasser]. „Cosmological Investigations On Large And Small Scales / Behnam Javanmardi“. Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1130704599/34.
Der volle Inhalt der QuelleRobinson, Mark. „Accessing large length and time scales with density functional theory“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609128.
Der volle Inhalt der QuellePujol, Vallribera Arnau. „Cosmology with galaxy surveys: how galaxies trace mass at large scales“. Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/385515.
Der volle Inhalt der QuelleGalaxy surveys are an important tool for cosmology. The distribution of galaxies allow us to study the formation of structures and their evolution, which are needed ingredients to study the evolution and content of the Universe. However, most of the matter is made of dark matter, which gravitates but does not interact with light. Hence, the galaxies that we observe from our telescopes only represent a small fraction of the total mass of the Universe. Because of this, we need to understand the connection between galaxies and dark matter in order to infer the total mass distribution of the Universe from galaxy surveys. Simulations are an important tool to predict the structure formation and evolution of dark matter and galaxy formation. Simulations allow us to study the impact of different cosmologies and galaxy formation models on the final large scale structures that galaxies and matter form. Simulations are also useful to calibrate our tools before applying them to real surveys. At large scales, galaxies trace the matter distribution. In particular, the galaxy density fluctuations at large scales are proportional to the underlying matter fluctuations by a factor that is called galaxy bias. This factor allows us to infer the total matter distribution from the distribution of galaxies, and hence knowledge of galaxy bias has a very important impact on our cosmological studies. This PhD thesis is focused on the study of galaxy and halo bias at large scales. There are several techniques to study galaxy bias, here we focus on two of them. The first technique is the Halo Occupation Distribution (HOD) model, that assumes that galaxies populate dark matter haloes depending only on the halo mass. With this hypothesis and a halo bias model, we can relate galaxy clustering with matter clustering and halo occupation. However, this hypothesis is not always accurate enough. We use the Millennium Simulation to study galaxy and halo bias, the halo mass dependence of halo bias, and its effects on galaxy bias prediction. We find that the halo occupation of galaxies does not only depend on mass, and assuming so causes an error in the galaxy bias predictions. We also study the environmental dependence of halo bias, and we show that environment constrains much more bias than mass. When a galaxy sample is selected by properties that are correlated with environment, the assumption that halo bias only depends on mass fails. We show that in these cases using the environmental dependence of halo bias produces a much better prediction of galaxy bias. Another technique to study galaxy bias is by using weak gravitational lensing to directly measure mass. Weak lensing is the field that studies the weak image distortions of galaxies due to the light deflections produced by the presence of a foreground mass distribution. Theses distortions can be used to infer the total mass (baryonic and dark) distribution at large scales. We develop and study a new method to measure bias from the combination of weak lensing and galaxy density fields. The method consists on reconstructing the weak lensing maps from the distribution of the foreground galaxies. Bias is then measured from the correlations between the reconstructed and real weak lensing fields. We test the different systematics of the method and the regimes where this method is consistent with other methods to measure linear bias. We find that we can measure galaxy bias using this technique. This method is a good complement to other methods to measure bias because it uses different assumptions. Together the different techniques will allow to constrain better bias and cosmology in future surveys.
Vanneste, Sylvain. „Constraints on primordial gravitational waves from the large scales CMB data“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS314/document.
Der volle Inhalt der QuelleThis thesis focuses on the development of analysis tools of the primordial B modes of the Cosmic Microwave Background (CMB). Our goal is to extract the amplitude of the primordial gravitational waves produced during the inflationary period.Specifically, we are interested in the large angular scales, for which the primary B modes signal is expected to be dominant. Since these scales are particularly contaminated by polarised galactic emissions, we have studied and developed approaches to reduce those contaminations and to characterise their residuals. Those methods are applicable to satellite missions such as Planck or LiteBIRD.In order to estimate the B modes amplitude, we developed and characterised a CMB anisotropies power spectrum estimator. The algorithm is pixels-based and allows to cross-correlate maps measured by different detectors. The method is optimal and minimises the E-to-B variance leakage.We applied the cleaning and spectrum estimation approaches to the polarisation data and simulation maps publicly provided by Planck. The constraints that we deduce are in agreement with past analysis. Ultimately, we derive an upper limit on the primordial gravitational waves amplitude
Monroe, Emy M. „Population Genetics and Phylogeography of Two Large-River Freshwater Mussel Species at Large and Small Spatial Scales“. Miami University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=miami1218129323.
Der volle Inhalt der QuelleMohammed, Abdulwasey. „Scaling up of peatland methane emission hotspots from small to large scales“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15772.
Der volle Inhalt der QuelleBücher zum Thema "Large-Scales"
A, Skjeltorp, Vicsek Tamás, NATO Advanced Study Institute, North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Study Institute on Complexity from Microscopic to Macroscopic Scales, Coherence and Large Deviations (2001 : Geilo, Norway), Hrsg. Complexity from microscopic to macroscopic scales: Coherence and large deviations. Dordrecht: Kluwer Academic, 2002.
Den vollen Inhalt der Quelle findenSkjeltorp, A. T., und T. Vicsek, Hrsg. Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0419-0.
Der volle Inhalt der QuelleSkjeltorp, A. T. Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. Dordrecht: Springer Netherlands, 2002.
Den vollen Inhalt der Quelle findenJianguo, Wu, Bradford David F und Environmental Monitoring Systems Laboratory (Las Vegas, Nev.), Hrsg. Stressor data sets for studying species diversity at large spatial scales. Las Vegas, NV: Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1995.
Den vollen Inhalt der Quelle findenWynn-Grant, Rae Jackson. Using Anthropogenic Parameters at Multiple Scales to Inform Conservation and Management of a Large Carnivore. [New York, N.Y.?]: [publisher not identified], 2015.
Den vollen Inhalt der Quelle findenKawamura, Ryuichi. Large-scale air-sea interactions in the tropical western Pacific on interannual and intraseasonal time scales. Tsukuba, Japan: Environmental Research Center, the University of Tsukuba, 1990.
Den vollen Inhalt der Quelle findenKawamura, Ryuichi. Large-scale air-sea interactions in the tropical western Pacific on interannual and intraseasonal time scales. Ibaraki: Environmental Research Centre. University of Tsukuba, 1990.
Den vollen Inhalt der Quelle findenSurvey, United States Geological. Large-scale mapping guidelines. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Den vollen Inhalt der Quelle findenSurvey, United States Geological. Large-scale mapping guidelines. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Den vollen Inhalt der Quelle findenUnited States Geological Survey. Large-scale mapping guidelines. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Large-Scales"
Mory, Mathieu. „Large Scales in Turbulence“. In Fluid Mechanics for Chemical Engineering, 139–70. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118617175.ch8.
Der volle Inhalt der QuelleArmstrong, Scott, Tuomo Kuusi und Jean-Christophe Mourrat. „Regularity on Large Scales“. In Grundlehren der mathematischen Wissenschaften, 67–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15545-2_3.
Der volle Inhalt der QuelleKrause, F. „Dynamo Excitation in Very Large Scales“. In Interstellar Magnetic Fields, 8–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72621-7_2.
Der volle Inhalt der QuelleLaing, R. A. „Large-Scale Structure: Jets on Kiloparsec Scales“. In Extragalactic Radio Sources, 147–52. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_58.
Der volle Inhalt der QuelleElmegreen, Bruce G. „Star Formation from Large to Small Scales“. In The Evolution of Galaxies, 83–96. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-3311-3_10.
Der volle Inhalt der QuelleWalters, Carl. „Adaptive Policy Design: Thinking at Large Spatial Scales“. In Wildlife and Landscape Ecology, 386–94. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1918-7_16.
Der volle Inhalt der QuelleDoroshkevich, A. G. „The Structure of the Universe on Large Scales“. In Observational Tests of Cosmological Inflation, 327–30. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3510-8_33.
Der volle Inhalt der QuelleSchulson, E. M. „Fracture of Ice on Scales Large and Small“. In IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, 161–70. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9735-7_14.
Der volle Inhalt der QuelleSharon, Eran, und Michal Sahaf. „The Mechanics of Leaf Growth on Large Scales“. In Plant Biomechanics, 109–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79099-2_5.
Der volle Inhalt der QuellePalous, Jan, Pavel Jachym und Sona Ehlerova. „Triggered Star Formation: From Large to Small Scales“. In Astrophysics and Space Science Library, 251–54. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2862-5_22.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Large-Scales"
Bridle, Alan H. „Jets on large scales“. In Testing the AGN paradigm diagnostics. AIP, 1992. http://dx.doi.org/10.1063/1.42256.
Der volle Inhalt der QuelleRaimbault, Juste, und Julien Perret. „Generating urban morphologies at large scales“. In The 2019 Conference on Artificial Life. Cambridge, MA: MIT Press, 2019. http://dx.doi.org/10.1162/isal_a_00159.
Der volle Inhalt der QuelleRaimbault, Juste, und Julien Perret. „Generating urban morphologies at large scales“. In The 2019 Conference on Artificial Life. Cambridge, MA: MIT Press, 2019. http://dx.doi.org/10.1162/isal_a_00159.xml.
Der volle Inhalt der QuelleBordas, Pol. „Jet/medium interactions at large-scales“. In 8th INTEGRAL Workshop “The Restless Gamma-ray Universe”. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.115.0059.
Der volle Inhalt der QuelleFLIN, P., K. BAJAN und W. GODLOWSKI. „SYMMETRIES IN THE UNIVERSE AT LARGE SCALES“. In Proceedings of the Second International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777850_0039.
Der volle Inhalt der QuelleHOGG, JOHN T. „MATING SYSTEMS AND CONSERVATION AT LARGE SPATIAL SCALES“. In Proceedings of the 14th Course of the International School of Ethology. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793584_0010.
Der volle Inhalt der QuelleBabanin, Alexander V. „Wave-Induced Turbulence, Linking Metocean and Large Scales“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18373.
Der volle Inhalt der QuelleKlein, Uta. „New Physics at Large Scales at an LHeC“. In Proceedings of the XVII International Workshop on Deep-Inelastic Scattering and Related Topics. Amsterdam: Science Wise Publishing, 2009. http://dx.doi.org/10.3360/dis.2009.221.
Der volle Inhalt der QuelleSiregar, Edouard, und Melvyn L. Goldstein. „A model for cyclotron interaction effects on large scales“. In Proceedings of the eigth international solar wind conference: Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51458.
Der volle Inhalt der Quelle„Learning by stimulation avoidance scales to large neural networks“. In ECAL 2017, the Fourteenth European Conference on Artificial Life. MIT Press, 2017. http://dx.doi.org/10.1162/isal_a_048.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Large-Scales"
Daniel, Don, und Daniel Livescu. Generating isotropic turbulence using a novel large scales forcing scheme. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1337056.
Der volle Inhalt der QuelleFiedler, Lenz, Normand Modine, Steve Schmerler, Dayton Vogel, Gabriel Popoola, Aidan Thompson, Sivasankaran Rajamanickam und Attila Cangi. Predicting the Electronic Structure of Matter on Ultra-Large Scales. Office of Scientific and Technical Information (OSTI), Oktober 2022. http://dx.doi.org/10.2172/1895024.
Der volle Inhalt der QuelleSchulson, Erland M. The Compressive Failure of Cracked Ice on Scales Large and Small. Fort Belvoir, VA: Defense Technical Information Center, Juli 2001. http://dx.doi.org/10.21236/ada394896.
Der volle Inhalt der QuelleKinser, Ryan, Mark Barkey, Timothy Rushing, Abby Cisko, Lyan Garcia, Paul Allison und J. Jordon. Computationally efficient modeling of lightweight expeditionary airfield surfacing systems at large length scales. Engineer Research and Development Center (U.S.), Februar 2024. http://dx.doi.org/10.21079/11681/48266.
Der volle Inhalt der QuelleSpeich, Sabrina. Development of targeted indicators and their uncertainties for demonstrators and Forecasts. EuroSea, 2022. http://dx.doi.org/10.3289/eurosea_d2.4.
Der volle Inhalt der QuelleRubio-Codina, Marta, María Caridad Araujo, Orazio P. Attanasio und Sally Grantham-McGregor. Concurrent Validity and Feasibility of Short Tests Currently Used to Measure Early Childhood Development in Large Scale Studies: Methodology and Results. Inter-American Development Bank, August 2016. http://dx.doi.org/10.18235/0012283.
Der volle Inhalt der QuelleMatsui, Hiroshi. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1154947.
Der volle Inhalt der QuelleAursjø, Olav, Aksel Hiorth, Alexey Khrulenko und Oddbjørn Mathias Nødland. Polymer flooding: Simulation Upscaling Workflow. University of Stavanger, November 2021. http://dx.doi.org/10.31265/usps.203.
Der volle Inhalt der QuelleZhang, Renduo, und David Russo. Scale-dependency and spatial variability of soil hydraulic properties. United States Department of Agriculture, November 2004. http://dx.doi.org/10.32747/2004.7587220.bard.
Der volle Inhalt der QuelleRiley, Brad. Scaling up: Renewable energy on Aboriginal lands in north west Australia. Nulungu Research Institute, 2021. http://dx.doi.org/10.32613/nrp/2021.6.
Der volle Inhalt der Quelle