Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Large-Scale fire“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Large-Scale fire" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Large-Scale fire"
Flisi, Umberto. „Large-scale fire reaction tests“. Polymer Degradation and Stability 23, Nr. 4 (Januar 1989): 385–96. http://dx.doi.org/10.1016/0141-3910(89)90060-8.
Der volle Inhalt der QuelleSteinhaus, Thomas, Stephen Welch, Richard Carvel und José Torero. „Large-scale pool fires“. Thermal Science 11, Nr. 2 (2007): 101–18. http://dx.doi.org/10.2298/tsci0702101s.
Der volle Inhalt der QuelleLönnermark, Anders, und Haukur Ingason. „Fire Spread and Flame Length in Large-Scale Tunnel Fires“. Fire Technology 42, Nr. 4 (24.04.2006): 283–302. http://dx.doi.org/10.1007/s10694-006-7508-7.
Der volle Inhalt der QuelleBabrauskas, Vytenis, Richard H. Harris, Emil Braun, Barbara C. Levin, Maya Paabo und Richard G. Gann. „Large-Scale Validation of Bench-Scale Fire Toxicity Tests“. Journal of Fire Sciences 9, Nr. 2 (März 1991): 125–48. http://dx.doi.org/10.1177/073490419100900203.
Der volle Inhalt der QuellePeacock, Richard D., und Vytenis Babrauskas. „Analysis of large-scale fire test data“. Fire Safety Journal 17, Nr. 5 (Januar 1991): 387–414. http://dx.doi.org/10.1016/0379-7112(91)90019-u.
Der volle Inhalt der QuelleChernogor, L. F., A. N. Nekos, G. V. Titenko und L. L. Chornohor. „Simulation of large-scale forest fire parameters“. 26, Nr. 26 (30.05.2022): 43–54. http://dx.doi.org/10.26565/1992-4259-2022-26-04.
Der volle Inhalt der QuelleIngason, Haukur, Ying Zhen Li, Glenn Appel, Ulf Lundström und Conny Becker. „Large Scale Tunnel Fire Tests with Large Droplet Water-Based Fixed Fire Fighting System“. Fire Technology 52, Nr. 5 (22.03.2015): 1539–58. http://dx.doi.org/10.1007/s10694-015-0479-9.
Der volle Inhalt der QuelleFerraris, S., J. Wen und S. Dembele. „Large-eddy Simulation Of A Large-scale Methane Pool Fire“. Fire Safety Science 8 (2005): 963–74. http://dx.doi.org/10.3801/iafss.fss.8-963.
Der volle Inhalt der QuelleKoo, Eunmo, Patrick J. Pagni, David R. Weise und John P. Woycheese. „Firebrands and spotting ignition in large-scale fires“. International Journal of Wildland Fire 19, Nr. 7 (2010): 818. http://dx.doi.org/10.1071/wf07119.
Der volle Inhalt der QuelleIngason, Haukur, und Ying Zhen Li. „Large scale tunnel fire tests with different types of large droplet fixed fire fighting systems“. Fire Safety Journal 107 (Juli 2019): 29–43. http://dx.doi.org/10.1016/j.firesaf.2019.04.007.
Der volle Inhalt der QuelleDissertationen zum Thema "Large-Scale fire"
McKenzie, Donald. „Modeling large-scale fire effects : concepts and applications /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5602.
Der volle Inhalt der QuelleGales, John Adam Brian. „Unbonded post-tensioned concrete structures in fire“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8083.
Der volle Inhalt der QuelleKlinck, Amanda. „An Experimental Investigation of the Fire Characteristics of the University of Waterloo Burn House Structure“. Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/774.
Der volle Inhalt der QuelleHenderson, Erik. „Metal Thermoelectrics: An Economical Solution to Large Scale Waste Heat Recovery“. University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1512038554977884.
Der volle Inhalt der QuelleFoster, Andrew. „Understanding, predicting and improving the performance of foam filled sandwich panels in large scale fire resistance tests“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/understanding-predicting-and-improving-the-performance-of-foam-filled-sandwich-panels-in-large-scale-fire-resistance-tests(3dc4bf07-82f0-4e3e-9cab-37e9244fe2a2).html.
Der volle Inhalt der QuelleDel, Valle Marcelo. „Benchmark sensitivity of the container analysis fire environment (CAFE) computer code using a rail-cask-size pipe calorimeter in large-scale pool fires“. abstract and full text PDF (UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1460792.
Der volle Inhalt der QuelleHorvath, Istva'n. „Extreme PIV Applications: Simultaneous and Instantaneous Velocity and Concentration Measurements on Model and Real Scale Car Park Fire Scenarios“. Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209641.
Der volle Inhalt der QuelleIn this actual chapter 1 general introduction is given to each chapter. Chapter 2 is dedicated to a detailed description of the instantaneous and simultaneous velocity and concentration measurement technique and its associated error assessment methodology. The name of the new technique is derived from the names of the acquired parameters (VELocity and COncentration) and shall be hereafter referred to as VELCO. After having validated and performed an error assessment of this technique, it is applied to an investigation of full-scale car park (30 m x 30 m x 2.6 m – Gent / WFRGENT) fire cases in chapter 3. The measurements were carried out with the financial support of IWT-SBO program. In the full-scale measurements only the velocity part is applied of VELCO, yet it can be considered as its application since the special data treating was developed and implemented in the Rabon (see: §2.1.2) program, which is the software of the new technique along with Tucsok (see: §2.1.1) and they will be both discussed in the related chapter. Here it is enough to mention that the concentration and velocity information can be obtained independently as well. During the full-scale measurements, beyond of VELCO the smoke back-layering distances (SBL) are also derived from the temperature values, which were measured by thermocouples under the ceiling in the midline of the car park. The critical velocity, which is an important measure of fire safety, can be obtained from the SBL results. In chapter 4, isothermal fire modeling is surveyed in order to present how full-scale fires are modeled in small-scale. In this part of the study the theory of fire related formulae and an isothermal model are described. Here it is important to stress the fact that the fire modeling is not directly related to the VELCO technique. However it connects the full-scale to the small-scale measurements, which the technique is applied on. Chapter 5 discusses small-scale measurements (1:25 – Rhode Saint Genese / VKI) on the car park introduced in chapter 3 and their validation. After the validation, more complex car parks scenarios are also investigated due to the easy to change layout in the small-scale model with respect to the full-scale car park. In this chapter the smoke back-layering distances are obtained by VELCO. Finally, in chapter 6 important conclusions are drawn with the objective of increasing fire safety.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Betting, Benjamin. „Etudes Expérimentales et lois prédictives des foyers d'incendies“. Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR054/document.
Der volle Inhalt der QuelleEach year in France, compartment fires result in more than 88,000 interventions involving more than 15,000 people, including several hundred deaths and serious injuries. Today, during fire compartments, the decision-making of the rescue teams is mainly based on human decisions, as a result of the accumulated experience. However, a perfect knowledge of the situation, its evolution over time and the dangers that may appear is impossible. Therefore, studying the fumes is of major interest. Indeed, smoke remains important to study because it conveys valuable information, especially on the appearance of thermal phenomena feared by firemen. In order to carry out this study, an experimental cell made up of two maritime containers was installed on the site of the Seine-Maritime fire brigade fire training. This platform will produce hot smokes in a configuration called "real fire" thanks to a propane burner. In this study, the smoke dynamics in a large scale experimental setup is analyzed using a non-intrusive measurement technique such as PIV (Particle Image Velocity). All the performed measurements are compared with LES (Large Eddy Simulation) simulations of the experiment using Fire Dynamics Simulator (FDS). The double expertise (numerical / experimental) is essential in this type of study where the experimental data suffer from a lack of resolution (spatial and temporal) but nevertheless represents an important source of information necessary for the validation of the codes
Covi, Patrick. „Multi-hazard analysis of steel structures subjected to fire following earthquake“. Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/313383.
Der volle Inhalt der QuelleAlcasena, Urdíroz Fermín J. „Wildfire risk management in southern European landscapes: Towards a long‐term comprehensive strategy“. Doctoral thesis, Universitat de Lleida, 2019. http://hdl.handle.net/10803/667939.
Der volle Inhalt der QuellePocos incendios grandes y destructivos representan la mayoría de los impactos negativos sobre los valores socioeconómicos y naturales en las áreas mediterráneas. Como resultado de la creciente acumulación de biomasa en los paisajes culturales que antes eran de grano fino, estos eventos no característicos que ocurren en condiciones climáticas extremas son resistentes a los esfuerzos de supresión debidos a las brasas de lluvia masiva, las intensidades de fuego abrumadoras y las tasas de propagación muy altas. Además, el aumento de las áreas de interfaz urbano-forestal representa un factor de condicionamiento que exige protección y aumenta sustancialmente la complejidad de la gestión de emergencias. Las políticas de prevención de ignición y extinción de incendios por sí solas resultan ineficaces para mitigar las pérdidas de incendios contemporáneos. En esta Tesis, implementé un marco analítico de múltiples escalas para informar la toma de decisiones de una estrategia de gestión de riesgos de incendios forestales con el objetivo de crear paisajes resistentes a incendios, restaurar el régimen cultural de incendios, apoyar la supresión segura y eficiente de incendios y crear comunidades adaptadas a incendios. Al disolver el riesgo de incendios forestales en los principales factores causales en escalas relacionadas con las capacidades de gestión de los diferentes agentes, desde los propietarios individuales hasta los gobiernos regionales, esta tesis intenta ofrecer una solución integral para lograr esos objetivos centrales a medio plazo en el sur de la Unión Europea regiones. Se implementó un enfoque de modelado de simulación de incendios para obtener los factores causales de riesgo requeridos o las métricas de exposición. La propagación y el comportamiento de los incendios en grandes áreas se modelaron teniendo en cuenta los regímenes de incendios variables en términos de estacionalidad, gran número de incendios y distribución espacial. Las relaciones de susceptibilidad definidas por los expertos o los modelos de mortalidad se utilizaron para evaluar los efectos del fuego como posibles pérdidas económicas a valores en riesgo. Además, utilizamos un análisis de transmisión para delimitar las cuencas comunitarias y evaluar el intercambio de incendios entre los municipios vecinos. La gestión de combustibles es la principal estrategia de mitigación del riesgo de incendios forestales a escala del paisaje, y se utilizaron modelos de optimización espacial para ayudar en el diseño estratégico del tratamiento del paisaje y explorar oportunidades de colocación bajo restricciones presupuestarias. Los resultados se proporcionaron en escalas operativas apropiadas para informar diferentes estrategias de manejo de incendios forestales. Los perfiles de exposición y la evaluación del riesgo a escalas finas para las estructuras de viviendas individuales y los valores forestales de los bosques de madera intentan promover la participación de los propietarios y demandan las buenas prácticas de los administradores forestales con el objetivo de mitigar las pérdidas por incendios encendidos en el mismo sitio (unidades de tratamiento) y las tierras vecinas. Los esfuerzos de gestión dentro de las áreas de planificación articulados como proyectos de planificación colaborativa entre diversos agentes socioeconómicos incluyen tratamientos de combustible de paisaje en lugares estratégicos que reducen la probabilidad general de incendios forestales y la intensidad de incendios, la planificación del paisaje para excluir áreas peligrosas para el desarrollo urbano, la preparación de la comunidad para reducir la vulnerabilidad social y las ordenanzas municipales para reducir la vulnerabilidad de la vivienda. El tratamiento conjunto de la producción representa una oportunidad en los ecosistemas forestales mediterráneos multifuncionales para organizar soluciones complejas. La formulación de políticas a escala regional prioriza a nivel municipal las diferentes estrategias de manejo, como los programas de prevención de ignición, el posicionamiento previo de recursos de supresión, la asignación de subsidios para tratamientos de combustible y la aplicación de la ley para el manejo de combustibles en comunidades de interfaz urbano-forestal en mayor riesgo. Los diferentes documentos se desarrollaron en varias áreas mediterráneas para resaltar la aplicabilidad del marco en otros lugares.
Few large and destructive fires account for most negative impacts on socioeconomic and natural values in Mediterranean areas. As a result of an increasing amount of biomass accumulation on the previously fine-grained cultural landscapes, these uncharacteristic events occurring under extreme weather conditions are resistant to suppression efforts due to massive showering embers, overwhelming fire intensities, and very high spread rates. Moreover, increasing wildland-urban interface areas represent a conditioning factor demanding protection and substantially increasing emergency management complexity. Ignition prevention and fire suppression policies alone result ineffective to mitigate losses from contemporary fires. In this Thesis I implemented a multiple-scale analytical framework to inform the decision-making of a wildfire risk management strategy aiming at creating fire resilient landscapes, restoring the cultural fire regime, supporting safe and efficient fire suppression, and creating fire-adapted communities. By decomposing wildfire risk into the main causative factors at scales related to management capabilities for the different agents, from the individual homeowners to Regional Governments, this dissertation attempts to provide a comprehensive solution to achieve those core goals on the mid-term in southern European Union regions. A fire simulation modeling approach was implemented to obtain the required risk causative factors or exposure metrics. Fire spread and behavior in large areas were modeled accounting for variable fire regimes in terms of seasonality, large fire number, and spatial distribution. Expert-defined susceptibility relations or mortality models were then used to assess fire effects as potential economic losses to values at risk. Moreover, we used a transmission analysis to delineate community firesheds and assess fire exchange among neighboring municipalities. Fuels management is the main wildfire risk mitigation strategy at the landscape scale, and spatial optimization models were used to help in strategic landscape treatment design and explore collocation opportunities under budgetary restrictions. Results were provided at appropriate operational scales to inform different wildfire management strategies. Exposure profiles and risk assessment at fine scales for individual housing structures and timber stand forest values attempt to promote homeowners’ involvement and demand forest managers’ good practices aiming at mitigating losses from fires ignited on the same site (treatment units) and the neighboring lands. Management efforts within Planning Areas articulated as collaborative planning projects among various socioeconomic agents include landscape fuel treatments on strategic locations reducing overall wildfire likelihood and fire intensity, landscape planning to exclude hazardous areas for the urban development, community preparedness reducing social vulnerability, and municipality ordinances to reduce housing vulnerability. Treatment joint-production represents an opportunity in multi-functional Mediterranean forest ecosystems to arrange complex solutions. Regional scale policy-making prioritizes at municipality level the different management strategies such as ignition prevention programs, suppression resource pre-positioning, assignation of subsidies for fuel treatments, and law enforcement for managing fuels in wildland-urban interface communities at highest risk. The different papers were developed in various Mediterranean areas to highlight the applicability of the framework elsewhere.
Bücher zum Thema "Large-Scale fire"
1942-, Keltner N. R., Alvares Norman J und Grayson S. J, Hrsg. Very large-scale fires. W. Conshohocken, PA: ASTM, 1998.
Den vollen Inhalt der Quelle findenKokkala, Matti. Five large-scale room fire experiments: Project 3 of the EUREFIC fire research programme. Espoo [Finland]: VTT, Technical Research Centre of Finland, 1992.
Den vollen Inhalt der Quelle findenMcKenzie, Donald. Predicting the effect of fire on large-scale vegetation patterns in North America. Portland, Or. (333 S.W. First Ave., P.O. Box 3890, Portland 97208-3890): U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1996.
Den vollen Inhalt der Quelle findenMcKenzie, Donald. Predicting the effect of fire on large-scale vegetation patterns in North America. [Portland, OR] (333 S.W. First Ave., P.O. Box 3890, Portland 97208-3890): U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1996.
Den vollen Inhalt der Quelle findenKeltner, NR, NJ Alvares und SJ Grayson, Hrsg. Very Large-Scale Fires. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1998. http://dx.doi.org/10.1520/stp1336-eb.
Der volle Inhalt der QuelleAddison Gallery of American Art., Hrsg. Large scale prints. Andover, Mass: Addison Gallery of American Art, Phillips Academy, 2003.
Den vollen Inhalt der Quelle finden(Firm), RMJM. Master planning & large scale development. United States?]: RMJM, 2012.
Den vollen Inhalt der Quelle findenLassettre, Neil S. Process based management of large woody debris at the basin scale, Soquel Creek, California: Report presented to California Dept. of Forestry and Fire Protection and Soquel Demonstration State Forest. [Sacramento, Calif.]: State of California, California Dept. of Forestry and Fire Protection, 2003.
Den vollen Inhalt der Quelle findenSandhu, Harjinder Singh. File replication and performance in large-scale distributed systems. Toronto: University of Toronto, Dept. of Computer Science, 1991.
Den vollen Inhalt der Quelle findenApratim, Purakayastha, und United States. National Aeronautics and Space Administration., Hrsg. Characterizing parallel file-access patterns on a large-scale multiprocessor. [Washington, DC: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Large-Scale fire"
Jordanov, Georgi, Jonathan D. Beezley, Nina Dobrinkova, Adam K. Kochanski, Jan Mandel und Bedřich Sousedík. „Simulation of the 2009 Harmanli Fire (Bulgaria)“. In Large-Scale Scientific Computing, 291–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29843-1_33.
Der volle Inhalt der QuelleMakovická Osvaldová, Linda, und Widya Fatriasari. „Large-Scale Test Methods“. In The Society of Fire Protection Engineers Series, 249–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39711-0_15.
Der volle Inhalt der QuelleLong, R. Thomas, Jason A. Sutula und Michael J. Kahn. „FM Global Large-Scale Fire Sprinkler Testing“. In SpringerBriefs in Fire, 17–19. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1077-9_4.
Der volle Inhalt der QuelleDobrinkova, Nina, und Georgi Dobrinkov. „FARSITE and WRF-Fire Models, Pros and Cons for Bulgarian Cases“. In Large-Scale Scientific Computing, 382–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43880-0_43.
Der volle Inhalt der QuelleDobrinkov, Georgi, und Nina Dobrinkova. „Input Data Preparation for Fire Behavior Fuel Modeling of Bulgarian Test Cases“. In Large-Scale Scientific Computing, 335–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26520-9_37.
Der volle Inhalt der QuelleSotirova, Evdokia, Emilia Velizarova, Stefka Fidanova und Krassimir Atanassov. „Modeling Forest Fire Spread Through a Game Method for Modeling Based on Hexagonal Cells“. In Large-Scale Scientific Computing, 321–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43880-0_36.
Der volle Inhalt der Quellevan der Meer, Sven, Eduard Grasa, Leonardo Bergesio, Miquel Tarzan, Diego Lopez, Dimitri Staessens, Sander Vrijders, Vincenzo Maffione und John Day. „Recursive InterNetwork Architecture (ARCFIRE, Large-scale RINA benchmark on FIRE)“. In Building the Future Internet through FIRE, 575–85. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337447-23.
Der volle Inhalt der QuelleDelichatsios, Michael A. „Prediction of Large Scale Fire Behavior Using Nuterial Flammability Properties“. In Prevention of Hazardous Fires and Explosions, 29–33. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4712-5_3.
Der volle Inhalt der QuelleCoetzee, Louis, Marisa Catalan, Josep Paradells, Anastasius Gavras und Maria Joao Barros. „Large Scale Testbed for Intercontinental Smart City Experiments and Pilots – Results and Experiences“. In Building the Future Internet through FIRE, 211–41. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337447-9.
Der volle Inhalt der QuelleNepstad, Daniel C., Peter Jipp, Paulo Moutinho, Gustavo Negreiros und Simone Vieira. „Forest Recovery Following Pasture Abandonment in Amazonia: Canopy Seasonality, Fire Resistance and Ants“. In Evaluating and Monitoring the Health of Large-Scale Ecosystems, 333–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79464-3_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Large-Scale fire"
E.S., Oran. „Large-Scale Transition to Detonation“. In Sixth International Seminar on Fire and Explosion Hazards. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7724-8_02-01.
Der volle Inhalt der QuelleSatoh, Kohyu, Liu Naian, Masahiko Shinohara und K. T. Yang. „Large-Scale Laboratory Fire Whirls and Their Numerical Simulations“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24242.
Der volle Inhalt der QuelleUrban, David L., Gary A. Ruff, Olivier Minster, A. Fernandez Pello, James T`ien, Jose Torero, Guillaume Legros et al. „Development of Large-Scale Spacecraft Fire Safety Experiments“. In 43rd International Conference on Environmental Systems. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3410.
Der volle Inhalt der QuelleSatoh, Koyu, Domingos Viegas, Claudia Pinto und Ran Tu. „CFD Study of Generation Process and Stability of a Fire Whirl in Large-Scale Fires“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10173.
Der volle Inhalt der QuelleFeldkamp, Martin, Thomas Quercetti und Frank Wille. „Outcomes of Three Large Scale Fire Reference Tests Conducted in BAM Fire Test Facility“. In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21245.
Der volle Inhalt der QuelleD., Makarov, Verbecke F., Keenan J. und Molkov V. „On Unresolved Mechanisms of Large Scale Deflagrations in Complex Geometries“. In Sixth International Seminar on Fire and Explosion Hazards. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7724-8_02-02.
Der volle Inhalt der QuelleRawat, Rajesh, Jennifer P. Spinti, Wing Yee und Philip J. Smith. „Parallelization of a Large Scale Hydrocarbon Pool Fire in the Uintah PSE“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33105.
Der volle Inhalt der QuelleMcGrattan, Kevin, Jason Floyd und Simo Hostikka. „A Mixture Fraction Combustion Model for Large Scale Fire Modeling“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24251.
Der volle Inhalt der QuelleTiwari, Mahesh Kumar, Akhilesh Gupta, Ravi Kumar und Pavan Kumar Sharma. „Numerical Study on Large Scale Pool Fire in a Compartment“. In Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019). Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/ihmtc-2019.1150.
Der volle Inhalt der QuelleSurzhikov, Sergey T., und Pierre Labourdette. „RADIATION-CONVECTION INTERACTION IN LARGE-SCALE OXYGEN-HYDROGEN FIRE BALLS“. In Radiative Transfer I. Proceedings of the First International Symposium on Radiation Transfer. Connecticut: Begellhouse, 1995. http://dx.doi.org/10.1615/ichmt.1995.radtransfproc.510.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Large-Scale fire"
Braun, Emil, Barbara C. Levin, Maya Paabo, Joshua L. Gurman, Helena M. Clark und Margaret F. Yoklavich. Large-scale compartment fire toxicity study :. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.88-3764.
Der volle Inhalt der QuelleSimpson, Richard B., Richard Pearson Jensen, Byron Demosthenous, Anay Josephine Luketa, Allen Joseph Ricks, Marion Michael Hightower, Thomas K. Blanchat et al. The Phoenix series large scale LNG pool fire experiments. Office of Scientific and Technical Information (OSTI), Dezember 2010. http://dx.doi.org/10.2172/1044989.
Der volle Inhalt der QuelleYang, J. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results. Office of Scientific and Technical Information (OSTI), Mai 2007. http://dx.doi.org/10.2172/908131.
Der volle Inhalt der QuelleMcKenzie, Donald, David L. Peterson und Ernesto Alvarado. Predicting the effect of fire on large-scale vegetation patterns in North America. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1996. http://dx.doi.org/10.2737/pnw-rp-489.
Der volle Inhalt der QuelleOhlemiller, T. J., und D. M. Corley. Estimation of the rate of heat release and induced wind field in a large scale fire. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4430.
Der volle Inhalt der QuelleZevotek, Robin, Keith Stakes und Joseph Willi. Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival: Full-Scale Experiments. UL Firefighter Safety Research Institute, Januar 2018. http://dx.doi.org/10.54206/102376/dnyq2164.
Der volle Inhalt der QuelleDouglas, Thomas A., Christopher A. Hiemstra, Stephanie P. Saari, Kevin L. Bjella, Seth W. Campbell, M. Torre Jorgenson, Dana R. N. Brown und Anna K. Liljedahl. Degrading Permafrost Mapped with Electrical Resistivity Tomography, Airborne Imagery and LiDAR, and Seasonal Thaw Measurements. U.S. Army Engineer Research and Development Center, Juli 2021. http://dx.doi.org/10.21079/11681/41185.
Der volle Inhalt der QuelleSarin, N. K. Operating procedures - flame tests on rigid ducts used for mine ventilation. Natural Resources Canada/CMSS/Information Management, 1987. http://dx.doi.org/10.4095/331775.
Der volle Inhalt der QuelleDoo, Johnny. Unsettled Issues Concerning eVTOL for Rapid-response, On-demand Firefighting. SAE International, August 2021. http://dx.doi.org/10.4271/epr2021017.
Der volle Inhalt der QuelleLeon Glicksman, Hesham Younis, Richard Hing-Fung Tan, Michel Louge, Elizabeth Griffith und Vincent Bricout. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/815225.
Der volle Inhalt der Quelle