Auswahl der wissenschaftlichen Literatur zum Thema „Lanthanum strontium manganese oxide“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lanthanum strontium manganese oxide" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Lanthanum strontium manganese oxide"

1

Orera, Alodia, Alejandro Betato, Jorge Silva-Treviño, Ángel Larrea und Miguel Á. Laguna-Bercero. „Advanced metal oxide infiltrated electrodes for boosting the performance of solid oxide cells“. Journal of Materials Chemistry A 10, Nr. 5 (2022): 2541–49. http://dx.doi.org/10.1039/d1ta07902f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Byeon, S. H., I. S. Kim, M. Itoh und T. Nakamura. „Structural study on new ordered potassium-nickel fluoride-type oxides, strontium lanthanum magnesium manganese oxide and strontium lanthanum zinc manganese oxide“. Materials Research Bulletin 28, Nr. 6 (Juni 1993): 597–603. http://dx.doi.org/10.1016/0025-5408(93)90056-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Hsiang-Jen, Mark R. De Guire, Zhengliang Xing, Gerry Agnew, Richard Goettler, Zhien Liu und Arthur H. Heuer. „Manganese Oxide Formation in Lanthanum Strontium Manganite-Yttria-Stabilized Zirconia SOFC Cathodes“. Metallurgical and Materials Transactions E 1, Nr. 3 (09.08.2014): 263–71. http://dx.doi.org/10.1007/s40553-014-0026-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ojo, Olajumoke Omolara. „Effect of Lanthanum Strontium Manganese Oxide (LaSMnO3) Nanoparticle on mouse Testosterone and Fertility“. Journal of Drug Delivery and Therapeutics 11, Nr. 2 (20.03.2021): 164–67. http://dx.doi.org/10.22270/jddt.v11i2.4614.

Der volle Inhalt der Quelle
Annotation:
Intraperitoneal administration of Lanthanum strontium manganese oxide (LaSMnO3) a new class of magnetic nanoparticle on mouse testosterone and fertility was investigated. For this, experimental mice divided into 4 groups (n=5); group I, II, III and IV were treated with vehicle (control), 5, 10 and 20 µg/kg/day of LaSMnO3 for 21 days respectively. Five animals from each group were sacrificed at interval of 0, 7, 14 and 21 days, however, after twenty-one days of the treatment, animals in all groups were allowed to cohabited with untreated female mice for fertility study. Toxic effects of LaSMnO3 on the testosterone and sperm parameters were analyzed. Effect on ROS and anti-oxidative biomarkers were also measured. Significant decrease (p<0.05) of epididymal spermatozoa motility and numbers was measured revealing the cytotoxicity effects of this nanomaterial. Light microscopic study revealed changes in the cauda epididymal sperm morphology. Failure of the fertility in LaSMnO3-treated mice as evidenced by the significant reduction in the average number of implantation in females mated with the treated males. Depletion of testicular testosterone hormone level by high dose of LaSMnO3 (20µg/kg/day) shows a reduced testicular androgen synthesis. This study therefore, shows the potential adverse effect of LaSMnO3 on male fertility. Keywords: Lanthanum strontium manganese oxide nanoparticle, animal models, toxicity, fertility
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Haghniaz, Reihaneh, Kavita R. Bhayani, Rinku D. Umrani und Kishore M. Paknikar. „Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging“. RSC Advances 3, Nr. 40 (2013): 18489. http://dx.doi.org/10.1039/c3ra40836a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Marinescu, Cornelia, Leonid Vradman, Speranta Tanasescu und Alexandra Navrotsky. „Thermochemistry of perovskites in the lanthanum–strontium–manganese–iron oxide system“. Journal of Solid State Chemistry 230 (Oktober 2015): 411–17. http://dx.doi.org/10.1016/j.jssc.2015.07.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Yikai, Su Jung Han und Sanjay Sampath. „Process-Property Correlations in Thermal Spray Functional Oxides“. AM&P Technical Articles 170, Nr. 11 (01.11.2012): 49–50. http://dx.doi.org/10.31399/asm.amp.2012-11.p049.

Der volle Inhalt der Quelle
Annotation:
Abstract An integrated strategy for the development of thermally sprayed functional oxide coatings is presented in this article. Strontium-doped lanthanum manganite (LSM), a prototypical functional oxide, was selected to demonstrate the approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Saitoh, T., A. E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, Y. Takeda und M. Takano. „Strontium-doped Lanthanum Manganese Oxides Studied by XPS“. Surface Science Spectra 6, Nr. 4 (Oktober 1999): 292–301. http://dx.doi.org/10.1116/1.1247937.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Winterhalder, Franziska Elisabeth, Yousef Alizad Farzin, Olivier Guillon, Andre Weber und Norbert H. Menzler. „Perovskite-Based Materials As Alternative Fuel Electrodes for Solid Oxide Electrolysis Cells (SOECs)“. ECS Transactions 111, Nr. 6 (19.05.2023): 1115–23. http://dx.doi.org/10.1149/11106.1115ecst.

Der volle Inhalt der Quelle
Annotation:
Perovskites show high potential as alternative fuel electrodes in solid oxide electrolysis cells (SOECs) due to their high chemical stability, high conductivity, good catalytic activity and cost-effectiveness. In this work, four perovskites (strontium-iron-niobate double perovskite (SFN), strontium-iron-titanate (STF), lanthanum-strontium-titanate (LST), and lanthanum-strontium-iron-manganese (LSFM)) were examined as fuel electrode materials for SOECs. First, the chemical stability of the perovskites in a reducing atmosphere and the reactivity between the electrode and electrolyte material were analyzed. Besides featuring good chemical stability under reducing conditions, SFN double perovskite and LST exhibit the lowest interaction with the electrolyte (yttria-stabilized zirconia, 8YSZ) after thermal treatment. The results indicate a need for a barrier layer between the tested electrode materials and the YSZ electrolyte to achieve sufficient cell performance throughout its operation in the electrolysis mode. After thoroughly evaluating all preliminary tests, STF was chosen for the first subsequent electrochemical tests. Initial impedance measurements of symmetrical electrolyte-supported cells consisting of pure STF-based electrodes with and without a barrier layer between the electrodes and the electrolyte were conducted to obtain a base for further optimization. For the 5STF fuel electrode, the obtained EIS data confirm the conclusion from the reactivity experiments. Applying a barrier layer at the 5STF fuel electrode/ electrolyte interface is needed to reduce the cell´s ohmic and polarization resistances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Každailis, Paulius, Ramute Girīunienė, Romualdas Rimeika, Daumantas ČIplys, Kristina Šliužienė, Vaclovas Lisauskas, Bonifacas Vengalis und Michael S. Shur. „Surface Acoustic Wave Propagation in Lanthanum Strontium Manganese Oxide - Lithium Niobate Structures“. Acta Acustica united with Acustica 99, Nr. 3 (01.05.2013): 493–97. http://dx.doi.org/10.3813/aaa.918629.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Lanthanum strontium manganese oxide"

1

Sun, Zhe. „Angle-resolved photoemission studies on bi-layer colossal magnetoresistive oxides lanthanum(2-2x)strontium(1+2x)manganese(2)oxide(7)“. Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cooper, Celeste Eaton. „Degradation in Performance of Lanthanum Strontium Manganite Based Solid Oxide Fuel Cell Cathodes Under Accelerated Testing“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1485524881843845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

CHIBA, RUBENS. „Sintese, processamento e caracterizacao das meia-celulas de oxido solido catodo/eletrolito de manganito de lantanio dopado com estroncio/zirconia estabilizada com itria“. reponame:Repositório Institucional do IPEN, 2010. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9503.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2014-10-09T12:27:23Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:06:51Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yang, Jun. „Studies on Polarization Behavior and Microstructure of Strontium-doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cells“. 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/151984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gong, Minhui. „Etude des électrodes sur batterie zinc-air“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLC024.

Der volle Inhalt der Quelle
Annotation:
La batterie zinc-air devient une alternative potentielle à la batterie lithium-ion en raison de son avantage en termes de ressources, de sa densité d'énergie théorique élevée et de son faible potentiel de risque pour la sécurité. Ce travail met l'accent sur les problèmes conventionnels impliquant à la fois l'électrode à zinc et à air, visant à l'application.Pour l'électrode de zinc, deux configurations maison sont utilisées pour étudier la croissance des dendrites de zinc et l'évolution de l'hydrogène pendant le dépôt avec un électrolyte statique et en flux, respectivement. On trouve qu'une concentration élevée de zincate dans un électrolyte avec 7 M KOH (> 0,4 M ZnO) et la présence de circulation de l’électrolyte sont préférables pour réduire la croissance des dendrites. Cependant l'électrolyte en circulation générerait plus de dégagement d'hydrogène. Pour l'électrode à air, une étude de voltampèremètre cyclique détaillée de l'activité catalytique de pérovskites de lanthane- manganèse dopés au strontium (LSMO) vis-à-vis de la réaction de réduction de l'oxygène est menée. Une nouvelle méthodologie est proposée pour la comparaison de l'activité catalytique des LSMO. L'assemblage de la batterie zinc-air est également testé en formulant les électrodes avec un polymère PVDF-HFP prometteur dans les applications d’électrode à air
Zinc-air battery is becoming a potential alternative for lithium-ion battery owing to its resource stock advantage, high theoretical energy density, and low potential of safety risk. This work emphasizes the conventional issues involving both zinc and air electrode, aiming to application.For the zinc electrode, two homemade setups are used to study the zinc dendrite growth and hydrogen evolution during deposition with static and flowing electrolyte, respectively. It is found that high zincate concentration in electrolyte with 7 M KOH (>0.4 M ZnO) and flowing electrolyte are preferable for depressing dendrite growth. While flowing electrolyte would generate more hydrogen evolution. For the air electrode, a detailed cyclic voltametric investigation of the catalytic activity of lanthanum strontium manganese oxides (LSMO) towards oxygen reduction reaction is conducted. A new current normalization method is proposed for comparison of catalytic activity of the LSMOs. Zinc-air battery assembly is also tested, while remaining to be improved. Nevertheless, cost-effective PVDF-HFP is found to be a promising binder for air electrode formulation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lauret, Hervé. „Propriétés électriques et électrochimiques de manganites de lanthane dopées comme matériau de cathode pour pile à combustible à oxyde électrolyte solide“. Grenoble INPG, 1994. http://www.theses.fr/1994INPG0053.

Der volle Inhalt der Quelle
Annotation:
Ce travail consiste en l'etude de materiaux de cathode pour les piles a combustible haute temperature. Ces materiaux ont pour formule generale la1-xsrxmno3 et (la1-yyy)0,5sr0,5mno3. Dans un premier chapitre nous faisons le point sur l'etat des recherches sur les piles a combustible a oxyde electrolyte solide et leurs constituants. Le deuxieme chapitre presente la synthese des echantillons ainsi que les differents dispositifs de mesures. Le chapitre trois est consacre a la caracterisation physique et electrique des echantillons. Nous avons montre en particulier que le dopage a l'yttrium diminuait le coefficient de dilatation thermique des manganites de lanthane. Pour les echantillons exempts d'yttrium une conductivite maximale est obtenue pour x=0,55. Une etude sur la reaction de reduction de l'oxygene a l'interface la1-xsrxmno3/y2o3-zro2 est menee dans le chapitre quatre. Nous confirmons l'apparition d'un effet electrocatalytique specifique a ce materiau d'electrode. Nous apportons une contribution complementaire a la comprehension du processus d'electrode: l'echantillon qui presente la plus grande activite electrocatalytique est celui qui a la plus forte conductivite electrique. Aux faibles polarisations cathodiques, superieures a -150 mv/air, nous prouvons que l'etape limitante a lieu le long du contact triple. Aux plus fortes polarisations cathodiques nous emettons l'hypothese d'une extension progressive de la reaction sur une zone annulaire autour du perimetre de contact entre le materiau de cathode et l'electrolyte. Enfin, la surface du materiau d'electrode exposee au gaz n'est pas limitante
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hammouche, Abderrezak. „Contribution à l'étude de La(1-x)Sr(x)MnO3 comme matériau d'électrode à oxygène à haute température“. Grenoble INPG, 1989. http://www.theses.fr/1989INPG0075.

Der volle Inhalt der Quelle
Annotation:
Les composes la#1##xsr#xmno#3 sont utilises comme materiau d'electrode a oxygene utilisables dans les cellules galvaniques mettant en jeu un oxyde d'electrolytes solides. Leur caracterisation physicochimique a porte sur la determination de la structure cristalline et l'etude des proprietes thermiques et electriques
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chung, Kimberly. „Investigation of the structure and properties of lanthanum strontium nickel oxide“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 360 p, 2008. http://proquest.umi.com/pqdweb?did=1609293431&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Price, Robert. „Metal/metal oxide co-impregnated lanthanum strontium calcium titanate anodes for solid oxide fuel cells“. Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/16018.

Der volle Inhalt der Quelle
Annotation:
Solid Oxide Fuel Cells (SOFC) are electrochemical energy conversion devices which allow fuel gases, e.g. hydrogen or natural gas, to be converted to electricity and heat at much high efficiencies than combustion-based energy conversion technologies. SOFC are particularly suited to employment in stationary energy conversion applications, e.g. micro-combined heat and power (μ-CHP) and base load, which are certain to play a large role in worldwide decentralisation of power distribution and supply over the coming decades. Use of high-temperature SOFC technology within these systems is also a vital requirement in order to utilise fuel gases which are readily available in different areas of the world. Unfortunately, the limiting factor to the long-term commercialisation of SOFC systems is the redox instability, coking intolerance and sulphur poisoning of the state-of-the-art Ni-based cermet composite anode material. This research explores the ‘powder to power' development of alternative SOFC anode catalyst systems by impregnation of an A-site deficient La0.20Sr0.25Ca0.45TiO3 (LSCT[sub](A-)) anode ‘backbone' microstructure with coatings of ceria-based oxide ion conductors and metallic electrocatalyst particles, in order to create a SOFC anode which exhibits high redox stability, tolerance to sulphur poisoning and low voltage degradation rates under operating conditions. A 75 weight percent (wt. %) solids loading LSCT[sub](A-) ink, exhibiting ideal properties for screen printing of thick-film SOFC anode layers, was screen printed with 325 and 230 mesh counts (per inch) screens onto electrolyte supports. Sintering of anode layers between 1250 °C and 1350 °C for 1 to 2 hours indicated that microstructures printed with the 230 mesh screen provided a higher porosity and improved grain connectivity than those printed with the 325 mesh screen. Sintering anode layers at 1350 °C for 2 hours provided an anode microstructure with an advantageous combination of lateral grain connectivity and porosity, giving rise to an ‘effective' electrical conductivity of 17.5 S cm−1 at 850 °C. Impregnation of this optimised LSCT[sub](A-) anode scaffold with 13-16 wt. % (of the anode mass) Ce0.80Gd0.20O1.90 (CGO) and either Ni (5 wt. %), Pd, Pt, Rh or Ru (2-3 wt. %) and integration into SOFC resulted in achievement of Area Specific Resistances (ASR) of as low as 0.39 Ω cm−2, using thick (160 μm) 6ScSZ electrolytes. Durability testing of SOFC with Ni/CGO, Ni/CeO2, Pt/CGO and Rh/CGO impregnated LSCT[sub](A-) anodes was subsequently carried out in industrial button cell test rigs at HEXIS AG, Winterthur, Switzerland. Both Ni/CGO and Pt/CGO cells showed unacceptable levels of degradation (14.9% and 13.4%, respectively) during a ~960 hour period of operation, including redox/thermo/thermoredox cycling treatments. Significantly, by exchanging the CGO component for the CeO2 component in the SOFC containing Ni, the degradation over the same time period was almost halved. Most importantly, galvanostatic operation of the SOFC with a Rh/CGO impregnated anode for >3000 hours (without cycling treatments) resulted in an average voltage degradation rate of < 1.9% kh−1 which, to the author's knowledge, has not previously been reported for an alternative, SrTiO3-based anode material. Finally, transfer of the Rh/CGO impregnated LSCT[sub](A-) anode to industrial short stack (5 cells) scale at HEXIS AG revealed that operation in relevant conditions, with low gas flow rates, resulted in accelerated degradation of the Rh/CGO anode. During a 1451 hour period of galvanostatic operation, with redox cycles and overload treatments, a voltage degradation of 19.2% was observed. Redox cycling was noted to briefly recover performance of the stack before rapidly degrading back to the pre-redox cycling performance, though redox cycling does not affect this anode detrimentally. Instead, a more severe, underlying degradation mechanism, most likely caused by instability and agglomeration of Rh nanoparticles under operating conditions, is responsible for this observed degradation. Furthermore, exposure of the SOFC to fuel utilisations of >100% (overloading) had little effect on the Rh/CGO co-impregnated LSCT[sub](A-) anodes, giving a direct advantage over the standard HEXIS SOFC. Finally, elevated ohmic resistances caused by imperfect contacting with the Ni-based current collector materials highlighted that a new method of current collection must be developed for use with these anode materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gharavi-Naeini, Jafar. „Doping and temperature dependence of the Raman spectra lanthanum strontium copper oxide“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0028/NQ51865.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Lanthanum strontium manganese oxide"

1

Chiba, Rubens, Reinaldo Azevedo Vargas, Marco Andreoli und Emília Satoshi Miyamaru Seo. „Solid Oxide Fuel Cells: Strontium-Doped Lanthanum Manganite Obtained by the Citrate Technique“. In Materials Science Forum, 643–48. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-423-5.643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Lan, Yujun Zhang, Y. D. Zhen und San Ping Jiang. „Lanthanum Strontium Manganite Powders Synthesized by Gel-Casting for Solid Oxide Fuel Cell Cathode Materials“. In Progress in Nanotechnology, 71–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470588246.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Setz, L. F. G., H. P. S. Correa, C. Yamagata und S. R. H. Mello-Castanho. „Synthesis and Sintering Behavior of Lanthanum Chromite Doped with Strontium and Cobalt for SOFC Interconnect Applications“. In Advances in Solid Oxide Fuel Cells III, 237–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339534.ch23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hu, Boxun, Manoj K. Mahapatra, Vinit Sharma, Rampi Ramprasad, Nguyen Minh, Scott Misture und Prabhakar Singh. „Durability Of Lanthanum Strontium Cobaltferrite ((La0.60Sr0.40)0.95(Co0.20Fe0.80)O3-x) Cathodes In CO2And H2O Containingair“. In Advances in Solid Oxide Fuel Cells and Electronic Ceramics, 75–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211501.ch8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Abellán, Patricia, César Moreno, Felip Sandiumenge und Xavier Obradors. „TEM for Characterization of Nanocomposite Oxide Thin Films: A Case Study on Solution-Derived Lanthanum Strontium Manganites“. In Transmission Electron Microscopy Characterization of Nanomaterials, 537–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38934-4_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Borrell, Amparo, Rut Benavente, René M. Guillén, María D. Salvador, Vaclav Pouchly, Martina Ilcikova, Richard Krumpolec und Rodrigo Moreno. „Study of SPS sintering of strontium-doped lanthanum manganite (LSM) by surface modification of powders using DCSBD and ALD“. In Ceramic Materials - Present and Future [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002035.

Der volle Inhalt der Quelle
Annotation:
Throughout the ceramic processing cycle, it is well known that a small change in the surface energy of as-received powders can cause a considerable effect on the final properties of consolidated materials. The main objective of this chapter is to describe the design and manufacture of new ceramic materials based on strontium-doped lanthanum manganites, LSM (La0.8Sr0.2MnO3) and LSM-8YTZP composites, for cathode in solid oxide fuel cells (SOFC) applications due to their excellent properties, by modifying the surface energy of the starting powder using techniques, such as Diffuse Coplanar Surface Barrier Discharge (DCSBD) and atomic layer deposition (ALD). Subsequently, in order to evaluate the activation energy and optimise the sintering behaviour of these powders, the Spark Plasma Sintering (SPS) technique will be used. SPS allows the complete densification of pieces by a fast and low energy consumption processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

PARK, SUN-YOUNG, HO-IL JI, HAE-RYOUNG KIM, KYUNG JOONG YOON, JI-WON SON, HAE-WEON LEE und JONG-HO LEE. „EFFECT OF LANTHANUM-STRONTIUM-COBALTITE CATHODE CURRENT-COLLECTING LAYER ON THE PERFORMANCE OF ANODE SUPPORTED TYPE PLANAR SOLID OXIDE FUEL CELLS“. In Solid State Ionics, 198–203. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814415040_0024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Lanthanum strontium manganese oxide"

1

Brüning, B., B. Gries, H. Nakadate und S. Zimmermann. „New Thermal Spray Powders for SOFC Components“. In ITSC2011, herausgegeben von B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0127.

Der volle Inhalt der Quelle
Annotation:
Abstract In Solid Oxide Fuel Cells (SOFC), thermal spraying has become a preferred process in order to create functional and protective coatings. After a long period of research, SOFC is on the way to become a fully developed technology starting into mass production. Cost aspects of coating generation are becoming decisive. For this reason, thermal spraying has become the preferred process to apply e.g. Manganese Cobalt Iron Oxide (MCF) coatings which prevent the formation of volatile Cr oxides in the SOFC air supply and off-gas. Also Lanthanum Strontium Manganese Oxide (LSM) is now preferentially applied via thermal spraying. The presentation highlights the properties of commercially available spray powders for SOFC, their processing via different spray processes, and the properties of coatings achieved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Harris, William M., George J. Nelson, Jeffrey J. Lombardo, Alex P. Cocco, John R. Izzo, Wilson K. S. Chiu, Pietro Tanasini et al. „Analysis of Solid Oxide Fuel Cell LSM-YSZ Composite Cathodes With Varying Starting Powder Sizes“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64237.

Der volle Inhalt der Quelle
Annotation:
Solid oxide fuel cell cathodes have been examined using non-destructive x-ray nanotomography. The cathodes examined were a composite of strontium-doped lanthanum manganite (LSM) and yttria-stabilized zirconia (YSZ), with three different starting powder sizes of 0.3 μm, 0.5 μm, and 1 μm. Differential absorption contrast imaging was performed over the manganese K-edge (6539 eV) for the identification of the LSM, YSZ, and pore phases. The three phases were each segmented from reconstruction of the tomography data. Three dimensional volumes of the segmented phases were used to calculate structural characterization parameters of the sample including porosity, pore size distributions, and mean phase sizes. These parameters are reported and some correlations are drawn to the starting powder size.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Xu, Zhigang, Devdas Pai und Jag Sankar. „Processing of Composite Cathode and YSZ Coatings for Solid Oxide Fuel Cells“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61012.

Der volle Inhalt der Quelle
Annotation:
In our research, composite cathodes of strontium-doped lanthanum manganite (LSM) and yttria-stabilized zirconia (YSZ) were produced by using slurry casting and sintering procedures. The slurry was prepared using ball milling. The time of ball milling was studied in terms of particle size and homogeneity of the powder in the slurry. The effect of the composition of the slurry on the microstructure was studied to obtain cathodes with desired porosity. The sintering process was also optimized to compromise the porosity, grain size, and strength of the cathodes. The YSZ coating was implemented using electrophoretic deposition in liquid phase. Different charging methods of the YSZ powder in the suspension was used and their results were compared. The microstructures of cathodes and YSZ coatings were characterized using scanning electron microscope (SEM).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Song, Jung-Hoon, Nigel M. Sammes und Xiaoyu Zhang. „Fabrication of Anode-Supported Micro-Tubular Solid Oxide Fuel Cell Using an Extrusion and Vacuum Infiltration Technique“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65264.

Der volle Inhalt der Quelle
Annotation:
A simple and mass productive extrusion technique was applied to fabricate anode-supported micro-tubular solid oxide fuel cells (SOFCs). A standard NiO/8YSZ (Nickel oxide/8 mol % yttria stabilized zirconia) cermets anode, 8 YSZ electrolyte, and LSM (Lanthanum strontium manganite) cathode were used as the materials components. SEM (secondary electron microscopy) images indicated vacuum infiltration method successfully generated the thin electrolyte layer (10∼15 μm) with a structurally effective three phase boundaries. Fabricated unit cell showed the open circuit voltage of 1.12 V without any fuel leaking problems. Electrochemical tests showed a maximum power density up to 0.30 W/cm2 at 800 °C, implying the excellent performance as micro-tubular SOFCs. This study verified that the extrusion aided by vacuum infiltration process could be a promising technique for mass production of microtubualr SOFCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Akhtar, Naveed, Stephen P. Decent, Daniel Loghin und Kevin Kendall. „Modelling of Co-Planar Type Single-Chamber Solid Oxide Fuel Cells (SC-SOFCs)“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65150.

Der volle Inhalt der Quelle
Annotation:
A two dimensional, non-isothermal numerical model of a single-chamber solid oxide fuel cell (SC-SOFC) has been developed. For the sake of simplicity in developing the model, hydrogen-air mixture (80% hydrogen, 20% air by volume which is considered as safe) has been chosen instead of hydrocarbon-air mixtures (which require complex modelling strategy such as reforming via partial oxidation, modelling of two active fuels, i.e. hydrogen and carbon monoxide). The model is based on considering yttria-stabilized zirconia (YSZ) as electrolyte supported material, nickel yttria-stabilized zirconia (Ni-YSZ) as anode and lanthanum strontium manganite (LSM) as cathode material. Effect of varying distance between anode and cathode, flow rate, temperature, porosity and electrolyte thickness has been investigated in terms of electrochemical performance. It has been found that the flow rate and distance between the electrodes pair are the most sensitive parameters in such type of fuel cells. The model was coded in a commercial software package of finite element analysis, i.e. COMSOL Multiphysics, 3.3a.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, C. J., C. X. Li und G. J. Yang. „Thermal Spray Fabrication of Cermet-Supported Tubular Solid Oxide Fuel Cells“. In ITSC2008, herausgegeben von B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p0183.

Der volle Inhalt der Quelle
Annotation:
Abstract Ni-Al2O3 cermet supported tubular solid oxide fuel cell (SOFC) has been fabricated by thermal spraying processes to aim at reducing fabrication cost. Ni-Al2O3 cermet support was deposited by flame spraying and the anode, electrolyte and cathode were deposited by plasma spraying on the support tube. YSZ-Ni was used as the anode and lanthanum strontium manganate was used as the cathode. Plasma-sprayed ScSZ and YSZ deposits, after post-spray densification treatment by nitrate solution, were used as the electrolyte at thicknesses of 40 µm to 100 µm to assemble SOFC single test cell. It was found that the output power density was increased with the decrease of electrolyte thickness. The cells assembled with ScSZ exhibited a higher powder density than YSZ electrolyte. The maximum output powder density reached 0.89 W/cm2 with ScSZ electrolyte of 40 µm thick at 1000°C in comparison of 0.76 W/cm2 obtained with YSZ electrolyte. The results showed that the tubular SOFC fabricated fully by thermal spray processes exhibits excellent performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gunda, Naga Siva Kumar, und Sushanta K. Mitra. „Quantification of Microstructural and Transport Properties of Solid Oxide Fuel Cells From Three-Dimensional Physically Realistic Network Structures“. In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54929.

Der volle Inhalt der Quelle
Annotation:
The present work investigated a new method of calculating effective transport properties of solid oxide fuel cell (SOFC) electrodes from three-dimensional (3D) physically realistic network structures. These physically realistic network structures are topological equivalent representations of reconstructed microstructures in the form of spheres (nodes or bodies) and cylinders (segments or throats). Maximal ball algorithm is used to extract these physically realistic network structures from the series of two-dimensional (2D) cross-sectional images of SOFC electrodes. Dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is performed on SOFC electrodes to acquire series of 2D cross-sectional images. Finite element method is implemented to compute the effective transport properties from the network structures. As an example, we applied this method to calculate the effective gas diffusivity of lanthanum strontium manganite (LSM) of SOFC. The results obtained from physically realistic network structures are compared with reconstructed 3D microstructures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Martins, R. F., M. C. Brant, R. Z. Domingues und T. Matencio. „NiO/YSZ Composites for SOFC: Synthesis and Characterization“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97146.

Der volle Inhalt der Quelle
Annotation:
Solid oxide fuel cell (SOFC) works at high temperature and is normally used in stationary devices which are of wide interest in the world market. The most currently SOFC developers utilize yttria-stabilized zirconia (YSZ) as electrolyte, strontium-doped lanthanum manganite (LSM) as cathode and a Ni/YSZ cermet obtained from NiO/YSZ in situ reduction as anode. The electrode performance is directly influenced by powder grain sizes, homogeneity, purity, and amount of Ni. Although physical mixture is a simpler procedure it hardly gives homogeneous materials as suitable to SOFC applications. Alternative chemical methods are sol-gel, impregnation and those derived from Pechini route. The present work compares thermal stability and hydrogen reducibility of NiO/YSZ composites prepared by impregnation (I), Pechini (P) and physical mixture (PM) procedures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ravi, B. G., S. Sampath, R. Gambino, P. S. Devi und J. B. Parise. „Plasma Spray Synthesis from Precursors: Progress, Issues and Considerations“. In ITSC2006, herausgegeben von B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima und J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p0871.

Der volle Inhalt der Quelle
Annotation:
Abstract Precursor plasma spray synthesis is an innovative and rapid method to make functional oxide ceramic coatings by starting from solution precursors and directly producing inorganic films. This emerging method, utilizes molecularly mixed precursor liquids, which essentially avoids the handling and selection of powders, opening up new avenues for developing compositionally complex functional oxide coatings. Precursor plasma spray also offers excellent opportunities in exploring the non-equilibrium phase evolution during plasma spraying of multi-component oxides from inorganic precursors. Although there have been efforts in this area since the 1980s and early 1990s with the goal of synthesizing nanoparticles, only recently has the work progressed in the area of functional systems. At the Center for Thermal Spray Research an integrated investigative strategy has been conducted to explore the benefits and limits of this synthesis strategy. Water and alcohol based sol/solution precursors derived from various chemical synthesis methods were used as feedstocks to deposit thin/thick films of spherical and nanostructured coatings of yttrium aluminum garnet (YAG), yttrium iron garnet (YIG), lanthanum strontium manganite (LSM) and Zr-substituted yttrium titanates, compositions of Y2O3-Al2O3 and their microstructural space centered around stochiometric YAG. A detailed discussion of the salient features of RF induction plasma spraying (RFPPS) approach, results obtained in the investigations to develop various functional oxide coatings and process issues and challenges are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Marchand, O., R. Rampon und G. Bertrand. „Anode SOFCs Produced by Suspension Plasma Spraying: Interests and Prospects“. In ITSC2008, herausgegeben von B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p1097.

Der volle Inhalt der Quelle
Annotation:
Abstract In order to achieve Solid Oxide Fuel Cells (SOFC) with reduced costs, the atmospheric plasma spray process (APS) could be an attractive technique. However, it is difficult to produce plasma sprayed coatings with the appropriate porosity for the electrodes and full density for the electrolyte. The spray process has been adapted by providing a suspension or a powder as feedstock material combined with optimized spray conditions to manufacture SOFC layers with required compositions, microstructures and properties. Suspensions or powders were injected in a plasma jet originating from a conventional torch (F4) implementing external devices. By using optimized suspensions of nickel oxide (NiO) and yttria stabilized zirconia (YSZ) in ethanol, porous anodes have been produced with thicknesses around 50 µm. By the same way aqueous suspensions of yttria stabilized zirconia (YSZ) powders have been prepared to achieve a fine layer as electrolyte to produce the first half cells and the porous cathode layers based on lanthanum strontium manganite (La0.8Sr0.2MnO3 or LSM) have been manufactured by conventional atmospheric plasma spraying of powders.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Lanthanum strontium manganese oxide"

1

Barnes, M. J. Strontium and Actinides Removal from Savannah River Site Actual Waste Samples by Freshly Precipitated Manganese Oxide. Office of Scientific and Technical Information (OSTI), Oktober 2002. http://dx.doi.org/10.2172/803397.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barnes, M. J. Strontium and Actinides Removal from Savannah River Site Actual Waste Samples by Freshly Precipitated Manganese Oxide. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/817623.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie