Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lambda-Pi calculus“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lambda-Pi calculus" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lambda-Pi calculus"
van Bakel, Steffen, und Maria Grazia Vigliotti. „A fully-abstract semantics of lambda-mu in the pi-calculus“. Electronic Proceedings in Theoretical Computer Science 164 (09.09.2014): 33–47. http://dx.doi.org/10.4204/eptcs.164.3.
Der volle Inhalt der QuelleFu, Weili, Fabian Krause und Peter Thiemann. „Label dependent lambda calculus and gradual typing“. Proceedings of the ACM on Programming Languages 5, OOPSLA (20.10.2021): 1–29. http://dx.doi.org/10.1145/3485485.
Der volle Inhalt der QuelleLaustsen, Niels Jakob, und Vladimir G. Troitsky. „Vector Lattices Admitting a Positively Homogeneous Continuous Function Calculus“. Quarterly Journal of Mathematics 71, Nr. 1 (25.01.2020): 281–94. http://dx.doi.org/10.1093/qmathj/haz031.
Der volle Inhalt der QuelleHirschowitz, André, Tom Hirschowitz und Ambroise Lafont. „Modules over monads and operational semantics (expanded version)“. Logical Methods in Computer Science Volume 18, Issue 3 (02.08.2022). http://dx.doi.org/10.46298/lmcs-18(3:3)2022.
Der volle Inhalt der QuellePaulus, Joseph W. N., Daniele Nantes-Sobrinho und Jorge A. Pérez. „Non-Deterministic Functions as Non-Deterministic Processes (Extended Version)“. Logical Methods in Computer Science Volume 19, Issue 4 (10.10.2023). http://dx.doi.org/10.46298/lmcs-19(4:1)2023.
Der volle Inhalt der QuelleMadiot, Jean-Marie, Damien Pous und Davide Sangiorgi. „Modular coinduction up-to for higher-order languages via first-order transition systems“. Logical Methods in Computer Science Volume 17, Issue 3 (17.09.2021). http://dx.doi.org/10.46298/lmcs-17(3:25)2021.
Der volle Inhalt der QuelleQuaglia, Paola. „On the Finitary Characterization of pi-Congruences“. BRICS Report Series 4, Nr. 52 (22.06.1997). http://dx.doi.org/10.7146/brics.v4i52.19273.
Der volle Inhalt der QuelleBlanqui, Frédéric, Gilles Dowek, Emilie Grienenberger, Gabriel Hondet und François Thiré. „A modular construction of type theories“. Logical Methods in Computer Science Volume 19, Issue 1 (14.02.2023). http://dx.doi.org/10.46298/lmcs-19(1:12)2023.
Der volle Inhalt der QuelleStark, Ian. „Names, Equations, Relations: Practical Ways to Reason about new“. BRICS Report Series 4, Nr. 39 (09.06.1997). http://dx.doi.org/10.7146/brics.v4i39.18965.
Der volle Inhalt der QuelleStark, Ian. „Names, Equations, Relations: Practical Ways to Reason about 'new'“. BRICS Report Series 3, Nr. 31 (04.09.1996). http://dx.doi.org/10.7146/brics.v3i31.21675.
Der volle Inhalt der QuelleDissertationen zum Thema "Lambda-Pi calculus"
Hondet, Gabriel. „Expressing predicate subtyping in computational logical frameworks“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG070.
Der volle Inhalt der QuelleSafe programming as well as most proof systems rely on typing. The more a type system is expressive, the more these types can be used to encode invariants which are therefore verified mechanically through type checking procedures. Dependent types extend simple types by allowing types to depend on values. For instance, it allows to define the types of lists of a certain length. Predicate subtyping is another extension of simple type theory in which types can be defined by predicates. A predicate subtype, usually noted {x: A | P(x)}, is inhabited by elements t of type A for which P(t) is true. This extension provides an extremely rich and intuitive type system, which is at the heart of the proof assistant PVS, at the cost of making type checking undecidable.This work is dedicated to the encoding of predicate subtyping in Dedukti: a logical framework with computation rules. We begin with the encoding of explicit predicate subtyping for which the terms in {x: A | P(x)} and terms of Aare syntactically different. We show that any derivable judgement of predicate subtyping can be encoded into a derivable judgement of the logical framework. Predicate subtyping, is often used implicitly: with no syntactic difference between terms of type A and terms of type {x: A | P(x) }. We enrich our logical framework with a term refiner which can add these syntactic markers. This refiner can be used to refine judgements typed with implicit predicate subtyping into explicited judgements.The proof assistant PVS uses extensively predicate subtyping. We show how its standard library can be exported to Dedukti. Because PVS only store proof traces rather than complete proof terms, we sketch in the penultimate section a procedure to generate complete proof terms from these proof traces.The last section provides the architecture of a repository dedicated to the exchange of formal proofs. The goal of such a repository is to categorise and store proofs encoded in Dedukti to promote interoperability
ABDICHE, MINA. „Pi-calcul et sous-typage : inference de types et codages du lambda-calcul dans le pi-calcul“. Paris 11, 2000. http://www.theses.fr/2000PA112214.
Der volle Inhalt der QuelleSaillard, Ronan. „Vérification de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique“. Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0027/document.
Der volle Inhalt der QuelleAutomatic proof checking is about using a computer to check the validity of proofs of mathematical statements. Since this verification is purely computational, it offers a high degree of confidence. Therefore, it is particularly useful for checking that a critical software, i.e., a software that when malfunctioning may result in death or serious injury to people, loss or severe damage to equipment or environmental harm, corresponds to its specification. DEDUKTI is such a proof checker. It implements a type system, the lambda-Pi-Calculus Modulo, that is an extension of the dependently-typed lambda-calculus with first-order rewrite rules. Through the Curry-Howard correspondence, DEDUKTI implements both a powerful programming language and an expressive logical system. Furthermore, this language is particularly well suited for encoding other proof systems. For instance, we can import in DEDUKTI theorems proved using other tools such as COQ, HOL or ZENON, a first step towards creating interoperability between these systems.The lambda-Pi-Calculus Modulo is a very expressive language. On the other hand, some fundamental properties such as subject reduction (i.e., the stability of typing by reduction) and uniqueness of types are not guaranteed in general and depend on the rewrite rules considered. Yet, these properties are necessary for guaranteeing the coherence of the proof system, but also for provingthe soundness and completeness of the type-checking algorithms implemented in DEDUKTI. Unfortunately, these properties are undecidable. In this thesis, we design new criteria for subject reduction and uniqueness of types that are decidable in order to be implemented in DEDUKTI.For this purpose, we give a new definition of the lambda-Pi-Calculus Modulo that takes into account the iterative aspect of the addition of rewrite rules in the typing context. A detailed study of this new system shows that the problems of subject reduction and uniqueness of types can be reduced to two simpler properties that we call product compatibility and well-typedness of rewrite rules.Hence, we study these two properties separately and give effective sufficient conditions for them to hold.These ideas have been implemented in DEDUKTI, increasing its generality and reliability
Beffara, Emmanuel. „Logique, Réalisabilité et Concurrence“. Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00011205.
Der volle Inhalt der QuelleLaurent, Olivier. „Investigations classiques, complexes et concurrentes à l'aide de la logique linéaire“. Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2010. http://tel.archives-ouvertes.fr/tel-00460805.
Der volle Inhalt der QuelleBuchteile zum Thema "Lambda-Pi calculus"
Cousineau, Denis, und Gilles Dowek. „Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo“. In Lecture Notes in Computer Science, 102–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73228-0_9.
Der volle Inhalt der QuelleKuttler, Céline, und Joachim Niehren. „Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch“. In Lecture Notes in Computer Science, 24–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11905455_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lambda-Pi calculus"
Färber, Michael. „Safe, fast, concurrent proof checking for the lambda-pi calculus modulo rewriting“. In CPP '22: 11th ACM SIGPLAN International Conference on Certified Programs and Proofs. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3497775.3503683.
Der volle Inhalt der QuelleIntrigila, B., und R. Statman. „The omega rule is /spl Pi//sub 2//sup 0/-hard in the /spl lambda//spl beta/-calculus“. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004. IEEE, 2004. http://dx.doi.org/10.1109/lics.2004.1319614.
Der volle Inhalt der Quelle