Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lagrangian particle methods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lagrangian particle methods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lagrangian particle methods"
Chakraborty, Rishiraj, Aaron Coutino und Marek Stastna. „Particle clustering and subclustering as a proxy for mixing in geophysical flows“. Nonlinear Processes in Geophysics 26, Nr. 3 (16.09.2019): 307–24. http://dx.doi.org/10.5194/npg-26-307-2019.
Der volle Inhalt der QuelleRabczuk, T., T. Belytschko und S. P. Xiao. „Stable particle methods based on Lagrangian kernels“. Computer Methods in Applied Mechanics and Engineering 193, Nr. 12-14 (März 2004): 1035–63. http://dx.doi.org/10.1016/j.cma.2003.12.005.
Der volle Inhalt der QuelleHealy, D. P., und J. B. Young. „Full Lagrangian methods for calculating particle concentration fields in dilute gas-particle flows“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, Nr. 2059 (15.06.2005): 2197–225. http://dx.doi.org/10.1098/rspa.2004.1413.
Der volle Inhalt der QuelleYan, Shiqiang, Q. W. Ma und Jinghua Wang. „Quadric SFDI for Laplacian Discretisation in Lagrangian Meshless Methods“. Journal of Marine Science and Application 19, Nr. 3 (September 2020): 362–80. http://dx.doi.org/10.1007/s11804-020-00159-x.
Der volle Inhalt der QuelleOyinbo, Sunday Temitope, und Tien-Chien Jen. „Feasibility of numerical simulation methods on the Cold Gas Dynamic Spray (CGDS) Deposition process for ductile materials“. Manufacturing Review 7 (2020): 24. http://dx.doi.org/10.1051/mfreview/2020023.
Der volle Inhalt der QuelleCampos Pinto, Martin, und Frédérique Charles. „From particle methods to forward-backward Lagrangian schemes“. SMAI journal of computational mathematics 4 (27.03.2018): 121–50. http://dx.doi.org/10.5802/smai-jcm.31.
Der volle Inhalt der QuelleNordam, Tor, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille und Andy M. Booth. „A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column“. Geoscientific Model Development 16, Nr. 18 (19.09.2023): 5339–63. http://dx.doi.org/10.5194/gmd-16-5339-2023.
Der volle Inhalt der QuelleWang, Yukun, Jingnan Sun, Meng Zhao, Alicia Murga, Sung-Jun Yoo, Kazuhide Ito und Zhengwei Long. „Numerical Study of Indoor Oil Mist Particle Concentration Distribution in an Industrial Factory Using the Eulerian–Eulerian and Eulerian–Lagrangian Methods“. Fluids 8, Nr. 10 (26.09.2023): 264. http://dx.doi.org/10.3390/fluids8100264.
Der volle Inhalt der QuelleFloryan, J. M., und H. Rasmussen. „Numerical Methods for Viscous Flows With Moving Boundaries“. Applied Mechanics Reviews 42, Nr. 12 (01.12.1989): 323–41. http://dx.doi.org/10.1115/1.3152416.
Der volle Inhalt der QuelleDavis, Sean L., Gustaaf B. Jacobs, Oishik Sen und H. S. Udaykumar. „SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, Nr. 2199 (März 2017): 20160769. http://dx.doi.org/10.1098/rspa.2016.0769.
Der volle Inhalt der QuelleDissertationen zum Thema "Lagrangian particle methods"
Fleissner, Florian. „Parallel object oriented simulation with Lagrangian particle methods“. Aachen Shaker, 2009. http://d-nb.info/1000976742/04.
Der volle Inhalt der QuelleFleissner, Florian [Verfasser]. „Parallel Object Oriented Simulation with Lagrangian Particle Methods / Florian Fleissner“. Aachen : Shaker, 2010. http://d-nb.info/1124364129/34.
Der volle Inhalt der QuelleHosein, Falahaty. „Enhanced fully-Lagrangian particle methods for non-linear interaction between incompressible fluid and structure“. Kyoto University, 2018. http://hdl.handle.net/2433/235070.
Der volle Inhalt der QuelleGrabel, Michael Z. „A Lagrangian/Eulerian Approach for Capturing Topological Changes in Moving Interface Problems“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563527241172213.
Der volle Inhalt der QuelleRieth, Martin [Verfasser], und Andreas [Akademischer Betreuer] Kempf. „Large eddy and direct numerical simulation of single and multiphase flows relying on lagrangian particle methods / Martin Rieth ; Betreuer: Andreas Kempf“. Duisburg, 2018. http://d-nb.info/1153337916/34.
Der volle Inhalt der QuellePinto, Wesley José Nunes. „Aplicação do método lagrangiano SPH (Smoothed Particle Hydrodynamics ) para a solução do problema das cavidades“. Universidade Federal do Espírito Santo, 2013. http://repositorio.ufes.br/handle/10/6144.
Der volle Inhalt der QuelleNeste estudo foi aplicado do método numérico, sem malhas, baseado em partículas, denominado SPH (Smoothed Particles Hydrodynamics). E um código numérico na linguagem computacional FORTRAN foi utilizado para solucionar as equações de Navier-Stokes. O clássico problema da literatura da dinâmica dos fluidos Computacional, denotado como problema da cavidade quadrada bidimensional (Shear-Driven Cavity Flow) , foi estudado com a intenção de verificar o comportamento do código numérico em relação a resultados específicos já existentes do assunto. O citado problema físico das cavidades abertas é amplamente empregado como benchmark, visando a validação do método numérico utilizado no trabalho desenvolvido na pesquisa. O trabalho de análise e validação do código numérico foi dividido em três seções: a primeira lista as localizações dos centros dos vórtices principais gerados pelo escoamento na aresta superior das cavidades; a segunda plota os perfis das componentes das velocidades centrais das cavidades; e a terceira: lista os desvios absolutos dos perfis das velocidades centrais do presente trabalho, comparados com dados de outros estudos. Constata-se que o método SPH apresentou boa acurácia nas simulações realizadas, obtendo boa concordância entre os resultados das simulações dinâmicas com os dados de referências, validando-se o modelo numérico proposto, tendo melhores resultados para baixos números de Reynolds
In this study, it was applied the numerical method, grid-free, based on particles named SPH (Smoothed Particles Hydrodynamics). Also, a numerical code in the computer language FORTRAN was used to solve the Navier-Stokes Equations. This classic problem of the literature related to Computational Fluid Dynamics indicated as Shear-Driven Cavity Flow was studied to check the behavior of the numerical code regarding specific existing results. Such problem is highly used as Benchmark, aiming the validation of the numerical method used to develop the research. The analysis and validation of the numerical code was divided into three sections: the first one lists the location of the centre of the main vortex generated by the flow of the upper edge of the cavities; the second one plots the profiles of the components of the central speed of the cavities; the third one lists the absolute deviation of the profiles of the central speed of this study compared with other cases data. It is established that the SPH Method presented accuracy in the performed simulations, in a consonance between the results of the dynamic simulations and the reference data, thus the proposed numerical model was validated with better results for low Reynolds numbers
Góes, Marciana Lima. „Desenvolvimento de um simulador numérico empregando o método Smoothed Particle Hydrodynamics para a resolução de escoamentos incompressíveis. Implementação computacional em paralelo (CUDA)“. Universidade do Estado do Rio de Janeiro, 2012. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=4029.
Der volle Inhalt der QuelleNeste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
In this work a numerical simulator was developed based on the mesh-free Smoothed Particle Hydrodynamics (SPH) method to solve incompressible newtonian fluid flows. Unlike most existing versions of this method, the numerical code uses an iterative technique in the pressure field determination. This approach employs a differential state equation for a compressible fluid and the continuity equation to calculate the pressure correction. A parallel version of the numerical code was implemented using the Programming Language C/C++ and Compute Unified Device Architecture (CUDA) from the NVIDIA Corporation. The numerical results were validated and the speed-up evaluated for an one-dimensional Couette flow and two-dimensional Shear Driven Cavity and Dambreak problems.
Freitas, Mayksoel Medeiros de. „Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões“. Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=4839.
Der volle Inhalt der QuelleIn this work, we have developed a numerical simulator (C/C++) to solve incompressible Newtonian fluid flows, based on the meshfree Lagrangian Smoothed Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to determine the pressure field to ensure the incompressibility of the fluid flow. The first is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in which an equation of state for a quasi-incompressible fluid is used to determine the pressure field. The second employs the Projection Method and the pressure field is obtained by solving a Poissons equation. In the study developed here, we have proposed three iterative methods based on the Projection Method to calculate the pressure field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to validate the iterative methods and the computational code we have simulated two one-dimensional problems: the Couette flow between two infinite parallel flat plates and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost particles have been used. A two-dimensional problem, the lid-driven cavity flow, has also been considered. In solving this problem we have used a periodic repositioning technique and ghost particles.
Cocle, Roger. „Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations : DNS and LES approaches“. Université catholique de Louvain, 2007. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-08172007-165806/.
Der volle Inhalt der QuelleVidal, Seguí Yolanda. „Mesh-Free Methods for Dynamic Problems. Incompressibility and Large Strain“. Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6709.
Der volle Inhalt der QuelleFirst of all, this thesis dedicates one chapter to the state of the art of mesh-free methods. The main reason is because there are many mesh-free methods that can be found in the literature which can be based on different ideas and with different properties. There is a real need of classifying, ordering and comparing these methods: in fact, the same or almost the same method can be found with different names in the literature.
Secondly, a novel improved formulation of the (EFG) method is proposed in order to alleviate volumetric locking. It is based on a pseudo-divergence-free interpolation. Using the concept of diffuse derivatives an a convergence theorem of these derivatives to the ones of the exact solution, the new approximation proposed is obtained imposing a zero diffuse divergence. In this way is guaranteed that the method verifies asymptotically the incompressibility condition and in addition the imposition can be done a priori. This means that the main difference between standard EFG and the improved method is how is chosen the interpolation basis. Modal analysis and numerical results for two classical benchmark tests in solids corroborate that, as expected, diffuse derivatives converge to the derivatives of the exact solution when the discretization is refined (for a fixed dilation parameter) and, of course, that diffuse divergence converges to the exact divergence with the expected theoretical rate. For standard EFG the typical convergence rate is degrade as the incompressible limit is approached but with the improved method good results are obtained even for a nearly incompressible case and a moderately fine discretization. The improved method has also been used to solve the Stokes equations. In this case the LBB condition is not explicitly satisfied because the pseudo-divergence-free approximation is employed. Reasonable results are obtained in spite of the equal order interpolation for velocity and pressure.
Finally, several techniques have been developed in the past to solve the well known tensile instability in the SPH (Smooth Particle Hydrodynamics) mesh-free method. It has been proved that a Lagrangian formulation removes completely the instability (but zero energy modes exist). In fact, Lagrangian SPH works even better than the Finite Element Method in problems involving distortions. Nevertheless, in problems with very large distortions a Lagrangian formulation will need of frequent updates of the reference configuration. When such updates are incorporated then zero energy modes are more likely to be activated. When few updates are carried out the error is small but when updates are performed frequently the solution is completely spoilt because of the zero energy modes. In this thesis an updated Lagrangian formulation is developed. It allows to carry out updates of the reference configuration without suffering the appearance of spurious modes. To update the Lagrangian formulation an incremental approach is used: an intermediate configuration will be the new reference configuration for the next time steps. It has been observed that this updated formulation suffers from similar numerical fracture to the Eulerian case. A modal analysis has proven that there exist zero energy modes. In the paper the updated Lagrangian method is exposed in detail, a stability analysis is performed and finally a stabilization technique is incorporated to preclude spurious modes.
Bücher zum Thema "Lagrangian particle methods"
Next Free-Lagrange Conference (1990 Moran, Wyo.). Advances in the Free-Lagrange method: Including contributions on adaptive gridding and the smooth particle hydrodynamics method : proceedings of the Next Free-Lagrange Conference held at Jackson Lake Lodge, Moran, Wyoming, USA, 3-7 June 1990. Berlin: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Oblique hypervelocity impact simulation for multi-layer orbital debris shielding (NAG 9-744): Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Oblique hypervelocity impact simulation for multi-layer orbital debris shielding (NAG 9-744): Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenTrease, Harold E., Martin F. Fritts und W. Patrick Crowley. Advances in the Free-Lagrange Method: Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Springer, 2014.
Den vollen Inhalt der Quelle findenFritts, M. J., H. E. Trease und Free-Lagrange Conference (1990 Moran Wyo ). Next. Advances in the Free-Lagrange Method: Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method : Proceedings of the (Lecture Notes in Physics). Springer, 1992.
Den vollen Inhalt der Quelle findenKachelriess, Michael. Classical mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0001.
Der volle Inhalt der QuelleRajeev, S. G. Finite Difference Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0014.
Der volle Inhalt der QuelleMann, Peter. Coordinates & Constraints. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0006.
Der volle Inhalt der QuelleMann, Peter. Partial Differentiation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0032.
Der volle Inhalt der QuelleBuchteile zum Thema "Lagrangian particle methods"
Cottet, Georges-Henri, und Petros Koumoutsakos. „High Order Semi-Lagrangian Particle Methods“. In Lecture Notes in Computational Science and Engineering, 103–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65870-4_6.
Der volle Inhalt der QuelleCottet, Georges-Henri. „Semi-Lagrangian Particle Methods for Hyperbolic Equations“. In Theory, Numerics and Applications of Hyperbolic Problems I, 395–411. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91545-6_31.
Der volle Inhalt der QuelleZannetti, Paolo, und Nazik Al-Madani. „Simulation of Transformation, Buoyancy and Removal Processes by Lagrangian Particle Methods“. In Air Pollution Modeling and Its Application IV, 733–44. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2455-3_39.
Der volle Inhalt der QuelleGrašič, Boštjan, Marija Zlata Božnar und Primož Mlakar. „New Methods for Improvement of the Computational Efficiency of the Lagrangian Particle Dispersion Model“. In Air Pollution Modeling and its Application XXI, 69–73. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1359-8_12.
Der volle Inhalt der QuelleXiao, Chang, Wei Liu, Jianying Wu und Dingyuan Zhang. „Seismic Response Analysis of Full Containment LNG Storage Tank Using Coupled Eulerian–Lagrangian and Smoothed Particle Hydrodynamics Methods“. In Computational and Experimental Simulations in Engineering, 1251–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42515-8_87.
Der volle Inhalt der QuelleMahomed, F. M., A. H. Kara und P. G. L. Leach. „Symmetries of Particle Lagrangians“. In Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, 273–76. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2050-0_28.
Der volle Inhalt der QuelleWittig, Hartmut. „QCD on the Lattice“. In Particle Physics Reference Library, 137–262. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_5.
Der volle Inhalt der QuelleGittings, Michael L. „TRIX: A free-lagrangian hydrocode“. In Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, 28–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54960-9_36.
Der volle Inhalt der QuelleDukowicz, John K., und Bertrand J. A. Meltz. „Vorticity errors in multidimensional Lagrangian codes“. In Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, 289–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54960-9_62.
Der volle Inhalt der QuelleRotach, Mathias W., und Stefan Schwere. „A Method to Speed up a Lagrangian Stochastic Particle Dispersion Model“. In Air Pollution Modeling and Its Application XIII, 509–17. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_52.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lagrangian particle methods"
Singh, Puneet, und Peretz Friedmann. „A Computational Fluid Dynamics Based Viscous Vortex Particle Method for Coaxial Rotor Interaction Calculations“. In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12002.
Der volle Inhalt der QuelleBillac, Thomas, Rodney Thomson, Mark Battley und Raj Das. „Water Impact of Helicopter Subfloor Panels“. In Vertical Flight Society 71st Annual Forum & Technology Display, 1–13. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10148.
Der volle Inhalt der QuelleStock, Mark J., und Adrin Gharakhani. „Solution-Responsive Particle Size Adaptivity in Lagrangian Vortex Particle Methods“. In ASME 2021 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/fedsm2021-65621.
Der volle Inhalt der QuelleDembele, Jean Marie, und Christophe Cambier. „Improving Lagrangian methods: toward an agent-particle based method“. In 2nd International ICST Conference on Simulation Tools and Techniques. ICST, 2009. http://dx.doi.org/10.4108/icst.simutools2009.5658.
Der volle Inhalt der QuelleO’Donnell, Jacob, Michael Smith und Paul Cavallaro. „Comparison of Residual Stresses in Cold Spray Coatings: Lagrangian vs. Eulerian Finite Element Methods“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-93902.
Der volle Inhalt der QuelleLe Lostec, Nechtan, Philippe Villedieu und Olivier Simonin. „Comparison Between Grad’s and Quadrature-Based Methods of Moments for the Numerical Simulation of Unsteady Particle-Laden Flows“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78360.
Der volle Inhalt der QuelleHuilier, Daniel. „Lagrangian Simulation of Gas-Solid Flows in Homogeneous Isotropic Turbulence“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2049.
Der volle Inhalt der QuelleXu, Yiban, Michael A. Krammen, Guoqiang Wang, Jesse S. Fisher und Zeses Karoutas. „Analysis of Particle Transfer Behavior in Fuel Rod Bundles Using CFD Lagrangian Particle Tracking Method“. In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-66793.
Der volle Inhalt der QuelleFuruhata, T., Sh Tanno und Takatoshi Miura. „COMPARATIVE STUDY OF TWO-PHASE (PARTICLE LADEN) JET CALCULATION METHODS (LAGRANGIAN AND EULERIAN METHODS)“. In ICLASS 94. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/iclass-94.660.
Der volle Inhalt der QuelleCulp, David B., und Xia Ma. „Modeling Fragmentation within Pagosa Using Particle Methods“. In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-085.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lagrangian particle methods"
Trahan, Corey, Jing-Ru Cheng und Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), Januar 2023. http://dx.doi.org/10.21079/11681/48057.
Der volle Inhalt der QuelleEnright, Douglas, Frank Losasso und Ronald Fedkiw. A Fast and Accurate Semi-Lagrangian Particle Level Set Method. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada479118.
Der volle Inhalt der Quelle