Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Label free identification.

Zeitschriftenartikel zum Thema „Label free identification“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Label free identification" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Li, Jing, Hua Xu, Graham M. West und Lyn H. Jones. „Label-free technologies for target identification and validation“. MedChemComm 7, Nr. 5 (2016): 769–77. http://dx.doi.org/10.1039/c6md00045b.

Der volle Inhalt der Quelle
Annotation:
Chemical probes have been instrumental in revealing new targets and confirming target engagement. However, substantial effort and resources are required to design and synthesize these probes. In contrast, label-free technologies have the advantage of bypassing the need for chemical probes. Here we highlight the recent developments in label-free methods and discuss the pros and cons of each approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nickelsen, Anna, und Joachim Jose. „Label-free flow cytometry-based enzyme inhibitor identification“. Analytica Chimica Acta 1179 (September 2021): 338826. http://dx.doi.org/10.1016/j.aca.2021.338826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lloyd, William R., Shailesh Agarwal, Sagar U. Nigwekar, Karen Esmonde-White, Shawn Loder, Shawn Fagan, Jeremy Goverman et al. „Raman spectroscopy for label-free identification of calciphylaxis“. Journal of Biomedical Optics 20, Nr. 8 (11.08.2015): 080501. http://dx.doi.org/10.1117/1.jbo.20.8.080501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Huafeng, Qingsong Hu und Zhanxuan Hu. „Catalyst for Clustering-Based Unsupervised Object Re-identification: Feature Calibration“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 4 (24.03.2024): 3091–99. http://dx.doi.org/10.1609/aaai.v38i4.28092.

Der volle Inhalt der Quelle
Annotation:
Clustering-based methods are emerging as a ubiquitous technology in unsupervised object Re-Identification (ReID), which alternate between pseudo-label generation and representation learning. Recent advances in this field mainly fall into two groups: pseudo-label correction and robust representation learning. Differently, in this work, we improve unsupervised object ReID from feature calibration, a completely different but complementary insight from the current approaches. Specifically, we propose to insert a conceptually simple yet empirically powerful Feature Calibration Module (FCM) before pseudo-label generation. In practice, FCM calibrates the features using a nonparametric graph attention network, enforcing similar instances to move together in the feature space while allowing dissimilar instances to separate. As a result, we can generate more reliable pseudo-labels using the calibrated features and further improve subsequent representation learning. FCM is simple, effective, parameter-free, training-free, plug-and-play, and can be considered as a catalyst, increasing the ’chemical reaction’ between pseudo-label generation and representation learning. Moreover, it maintains the efficiency of testing time with negligible impact on training time. In this paper, we insert FCM into a simple baseline. Experiments across different scenarios and benchmarks show that FCM consistently improves the baseline (e.g., 8.2% mAP gain on MSMT17), and achieves the new state-of-the-art results. Code is available at: https://github.com/lhf12278/FCM-ReID.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Choi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper und Sunggook Park. „Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis“. Small 17, Nr. 42 (23.09.2021): 2102567. http://dx.doi.org/10.1002/smll.202102567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Choi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper und Sunggook Park. „Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis“. Small 17, Nr. 42 (23.09.2021): 2102567. http://dx.doi.org/10.1002/smll.202102567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dannhauser, David, Paolo Antonio Netti und Filippo Causa. „Label-free scattering snapshot classification for living cell identification“. EPJ Web of Conferences 309 (2024): 10021. http://dx.doi.org/10.1051/epjconf/202430910021.

Der volle Inhalt der Quelle
Annotation:
A scattering snapshot hold an enormous potential for cell class and state classification, allowing to avoid costly fluorescence labelling. Beside convolutional neural networks show outstanding image classification performance compared to other state-of-the-art methods, regarding accuracy and speed. Therefore, we combined the two techniques (Light Scattering and Deep Learning) to identify living cells with high precision. Neural Networks show high prediction performance for known classes but struggles when unknown classes need to be identified. In such a scenario no prior knowledge of the unknown cell class can be used for the model training, which inevitably results in a misclassification. To overcome the hurdle, of identifying unknown cell classes, we must first define an in-distribution of known snapshots to afterwards detect out of distribution snapshots as unknowns. Ones, such a new cell class is identified, we can retrain our cell classifier with the obtained knowledge, so we dynamically update the cell class database. We applied this measurement approach to scattering pattern snapshots of different classes of living cells. Our outcome shows a precise cell classification, which can be applied to a wide range of single cell classification approaches.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Paidi, Santosh Kumar, Soumik Siddhanta, Robert Strouse, James B. McGivney, Christopher Larkin und Ishan Barman. „Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy“. Analytical Chemistry 88, Nr. 8 (08.04.2016): 4361–68. http://dx.doi.org/10.1021/acs.analchem.5b04794.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Faria, Henrique Antonio Mendonça, und Valtencir Zucolotto. „Label-free electrochemical DNA biosensor for zika virus identification“. Biosensors and Bioelectronics 131 (April 2019): 149–55. http://dx.doi.org/10.1016/j.bios.2019.02.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bae, Euiwon, Nan Bai, Amornrat Aroonnual, Arun K. Bhunia und E. Daniel Hirleman. „Label-free identification of bacterial microcolonies via elastic scattering“. Biotechnology and Bioengineering 108, Nr. 3 (10.11.2010): 637–44. http://dx.doi.org/10.1002/bit.22980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Shin, Hyunku, Dongkwon Seo und Yeonho Choi. „Extracellular Vesicle Identification Using Label-Free Surface-Enhanced Raman Spectroscopy: Detection and Signal Analysis Strategies“. Molecules 25, Nr. 21 (09.11.2020): 5209. http://dx.doi.org/10.3390/molecules25215209.

Der volle Inhalt der Quelle
Annotation:
Extracellular vesicles (EVs) have been widely investigated as promising biomarkers for the liquid biopsy of diseases, owing to their countless roles in biological systems. Furthermore, with the notable progress of exosome research, the use of label-free surface-enhanced Raman spectroscopy (SERS) to identify and distinguish disease-related EVs has emerged. Even in the absence of specific markers for disease-related EVs, label-free SERS enables the identification of unique patterns of disease-related EVs through their molecular fingerprints. In this review, we describe label-free SERS approaches for disease-related EV pattern identification in terms of substrate design and signal analysis strategies. We first describe the general characteristics of EVs and their SERS signals. We then present recent works on applied plasmonic nanostructures to sensitively detect EVs and notable methods to interpret complex spectral data. This review also discusses current challenges and future prospects of label-free SERS-based disease-related EV pattern identification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lyu, Bohai, Wenfeng Gou, Feifei Xu, Yanli Li, Yiliang Li und Wenbin Hou. „Label-free Protein Analysis Methods for Active Compound Targets Identification“. Acta Chimica Sinica 82, Nr. 6 (2024): 629. http://dx.doi.org/10.6023/a24030082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Thomas, Giju, Melanie A. McWade, John Q. Nguyen, Melinda E. Sanders, James T. Broome, Naira Baregamian, Carmen C. Solórzano und Anita Mahadevan-Jansen. „Innovative surgical guidance for label-free real-time parathyroid identification“. Surgery 165, Nr. 1 (Januar 2019): 114–23. http://dx.doi.org/10.1016/j.surg.2018.04.079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Park, Hankum, Jaeyoung Ha und Seung Bum Park. „Label-free target identification in drug discovery via phenotypic screening“. Current Opinion in Chemical Biology 50 (Juni 2019): 66–72. http://dx.doi.org/10.1016/j.cbpa.2019.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Poenar, Daniel P., Ciprian Iliescu, Jérôme Boulaire und Hanry Yu. „Label-free virus identification and characterization using electrochemical impedance spectroscopy“. ELECTROPHORESIS 35, Nr. 2-3 (27.11.2013): 433–40. http://dx.doi.org/10.1002/elps.201300368.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wang, Shu, Xiuqiang Chen, Weilin Wu, Zhida Chen, Huiping Du, Xingfu Wang, Yu Vincent Fu, Liwen Hu und Jianxin Chen. „Rapid, label-free identification of cerebellar structures using multiphoton microscopy“. Journal of Biophotonics 10, Nr. 12 (02.05.2017): 1617–26. http://dx.doi.org/10.1002/jbio.201600297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Schneider, Greg, Keisuke Wagatsuma, Asako Tsubouchi, Juliet Packiasamy, Mika Uematsu, Hiroko Nomaru, Kazuki Teranishi et al. „Label-free morphological profiling and isolation of immune cell subsets using VisionSort, a novel, AI-based flow cytometry platform.“ Journal of Immunology 212, Nr. 1_Supplement (01.05.2024): 0251_4944. http://dx.doi.org/10.4049/jimmunol.212.supp.0251.4944.

Der volle Inhalt der Quelle
Annotation:
Abstract Identification, characterization, and minimally invasive isolation of specific populations of human immune cells are critical for understanding and treating disease. Here we present data on label-free identification of three immune cell subsets by morphological profiling using VisionSort; a label-free, artificial intelligence (AI)-driven cellular analysis and sorting platform. By capturing single-cell digital phenotypes, we characterized mouse T-cells and generated ‘ground truth’ functional profiles for activated and non-activated T cells. A set of machine-learning derived classifiers was generated to identify these phenotypic classes in unlabeled T-cell subsets. The classifier showed an area under the curve (AUC) performance for differentiating between phenotypically defined T cell populations of 0.917. In addition, by using unsupervised machine learning, we were able to resolve activated and non-activated T cell populations label free, using morphological data alone. Using a similar approach, we show label-free differentiation/classification of B cells from plasma cells with an AUC score of 0.941 and M1 and M2 polarized macrophages with an AUC score of 0.878 +/- 0.002 (n=6). Here we report results on the use of a novel, label-free cytometry platform to characterize and isolate human immune cell subsets using morphological profiling and AI with applications for investigators in basic life sciences and drug developers in small molecule, antibody, and cell therapy R&D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zamzami, Mazin, Samer Alamoudi, Abrar Ahmad, Hani Choudhry, Mohammad Imran Khan, Salman Hosawi, Gulam Rabbani, El-Sayed Shalaan und Bassim Arkook. „Direct Identification of Label-Free Gram-Negative Bacteria with Bioreceptor-Free Concentric Interdigitated Electrodes“. Biosensors 13, Nr. 2 (23.01.2023): 179. http://dx.doi.org/10.3390/bios13020179.

Der volle Inhalt der Quelle
Annotation:
This investigation demonstrates an electrochemical method for directly identifying unlabeled Gram-negative bacteria without other additives or labeling agents. After incubation, the bacterial cell surface is linked to the interdigitated electrode through electroadsorption. Next, these cells are exposed to a potential difference between the two electrodes. The design geometry of an electrode has a significant effect on the electrochemical detection of Gram-negative bacteria. Therefore, electrode design geometry is a crucial factor that needs to be considered when designing electrodes for electrochemical sensing. They provide the area for the reaction and are responsible for transferring electrons from one electrode to another. This work aims to study the available design in the commercial market to determine the most suitable electrode geometry with a high detection sensitivity that can be used to identify and quantify bacterial cells in normal saline solutions. To work on detecting bacterial cells without the biorecognition element, we have to consider the microelectrode’s design, which makes it very susceptible to bacteria size. The concentration–dilution technique measures the effect of the concentration on label-free Gram-negative bacteria in a normal saline solution without needing bio-recognized elements for a fast screening evaluation. This method’s limit of detection (LOD) cannot measure concentrations less than 102 CFU/mL and cannot distinguish between live and dead cells. Nevertheless, this approach exhibited excellent detection performance under optimal experimental conditions and took only a few hours.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Baik, Minyoung, Sanghoon Shin, Samir Kumar, Dongmin Seo, Inha Lee, Hyun Sik Jun, Ka-Won Kang, Byung Soo Kim, Myung-Hyun Nam und Sungkyu Seo. „Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology“. Biosensors 13, Nr. 12 (21.11.2023): 993. http://dx.doi.org/10.3390/bios13120993.

Der volle Inhalt der Quelle
Annotation:
Accurate and efficient classification and quantification of CD34+ cells are essential for the diagnosis and monitoring of leukemia. Current methods, such as flow cytometry, are complex, time-consuming, and require specialized expertise and equipment. This study proposes a novel approach for the label-free identification of CD34+ cells using a deep learning model and lens-free shadow imaging technology (LSIT). LSIT is a portable and user-friendly technique that eliminates the need for cell staining, enhances accessibility to nonexperts, and reduces the risk of sample degradation. The study involved three phases: sample preparation, dataset generation, and data analysis. Bone marrow and peripheral blood samples were collected from leukemia patients, and mononuclear cells were isolated using Ficoll density gradient centrifugation. The samples were then injected into a cell chip and analyzed using a proprietary LSIT-based device (Cellytics). A robust dataset was generated, and a custom AlexNet deep learning model was meticulously trained to distinguish CD34+ from non-CD34+ cells using the dataset. The model achieved a high accuracy in identifying CD34+ cells from 1929 bone marrow cell images, with training and validation accuracies of 97.3% and 96.2%, respectively. The customized AlexNet model outperformed the Vgg16 and ResNet50 models. It also demonstrated a strong correlation with the standard fluorescence-activated cell sorting (FACS) technique for quantifying CD34+ cells across 13 patient samples, yielding a coefficient of determination of 0.81. Bland–Altman analysis confirmed the model’s reliability, with a mean bias of −2.29 and 95% limits of agreement between 18.49 and −23.07. This deep-learning-powered LSIT offers a groundbreaking approach to detecting CD34+ cells without the need for cell staining, facilitating rapid CD34+ cell classification, even by individuals without prior expertise.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Jiang, Yiyue, Cheng Lei, Atsushi Yasumoto, Hirofumi Kobayashi, Yuri Aisaka, Takuro Ito, Baoshan Guo et al. „Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy“. Lab on a Chip 17, Nr. 14 (2017): 2426–34. http://dx.doi.org/10.1039/c7lc00396j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hassanain, Waleed A., Frederick L. Theiss und Emad L. Izake. „Label-free identification of Erythropoietin isoforms by surface enhanced Raman spectroscopy“. Talanta 236 (Januar 2022): 122879. http://dx.doi.org/10.1016/j.talanta.2021.122879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jo, YoungJu, JaeHwang Jung, Min-hyeok Kim, HyunJoo Park, Suk-Jo Kang und YongKeun Park. „Label-free identification of individual bacteria using Fourier transform light scattering“. Optics Express 23, Nr. 12 (08.06.2015): 15792. http://dx.doi.org/10.1364/oe.23.015792.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Alfonso-García, Alba, Tim D. Smith, Rupsa Datta, Thuy U. Luu, Enrico Gratton, Eric O. Potma und Wendy F. Liu. „Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy“. Journal of Biomedical Optics 21, Nr. 4 (18.04.2016): 046005. http://dx.doi.org/10.1117/1.jbo.21.4.046005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Yan, Zhongbo, Suman Dutta, Zirui Liu, Xinke Yu, Neda Mesgarzadeh, Feng Ji, Gal Bitan und Ya-Hong Xie. „A Label-Free Platform for Identification of Exosomes from Different Sources“. ACS Sensors 4, Nr. 2 (15.01.2019): 488–97. http://dx.doi.org/10.1021/acssensors.8b01564.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Zhao, Bin, Ning Liu, Lai Chen, Shuo Geng, Zhijin Fan und Jihong Xing. „Direct label-free methods for identification of target proteins in agrochemicals“. International Journal of Biological Macromolecules 164 (Dezember 2020): 1475–83. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.237.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Rukes, Verena, Evita Norkute, Georges Barnikol, Jingze Duan, Jiajie Gao und Chan Cao. „BPS2025 – Label-free identification of full-length proteins using a nanopore“. Biophysical Journal 124, Nr. 3 (Februar 2025): 497a. https://doi.org/10.1016/j.bpj.2024.11.2617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Park, Hankum, Jaeyoung Ha, Ja Young Koo, Jongmin Park und Seung Bum Park. „Label-free target identification using in-gel fluorescence difference via thermal stability shift“. Chemical Science 8, Nr. 2 (2017): 1127–33. http://dx.doi.org/10.1039/c6sc03238a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Puangpila, Chanida, und Ziad El Rassi. „Capturing and identification of differentially expressed fucome by a gel free and label free approach“. Journal of Chromatography B 989 (Mai 2015): 112–21. http://dx.doi.org/10.1016/j.jchromb.2015.03.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lee, Do-Hyun, Xuan Li, Ning Ma, Michelle A. Digman und Abraham P. Lee. „Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy“. Lab on a Chip 18, Nr. 9 (2018): 1349–58. http://dx.doi.org/10.1039/c7lc01301a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Nallala, Jayakrupakar, Marie-Danièle Diebold, Cyril Gobinet, Olivier Bouché, Ganesh Dhruvananda Sockalingum, Olivier Piot und Michel Manfait. „Infrared spectral histopathology for cancer diagnosis: a novel approach for automated pattern recognition of colon adenocarcinoma“. Analyst 139, Nr. 16 (2014): 4005–15. http://dx.doi.org/10.1039/c3an01022h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Martinez-Duarte, Rodrigo. „Editorial for the Special Issue on Micromachines for Dielectrophoresis“. Micromachines 13, Nr. 3 (08.03.2022): 417. http://dx.doi.org/10.3390/mi13030417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Dalmay, Claire, Arnaud Pothier, Mathilde Cheray, Fabrice Lalloue, Marie-Odile Jauberteau und Pierre Blondy. „Label-free RF biosensors for human cell dielectric spectroscopy“. International Journal of Microwave and Wireless Technologies 1, Nr. 6 (Dezember 2009): 497–504. http://dx.doi.org/10.1017/s1759078709990614.

Der volle Inhalt der Quelle
Annotation:
This paper presents an original biosensor chip allowing determination of intrinsic relative permittivity of biological cells at microwave frequencies. This sensor permits non-invasive cell identification and discrimination using an RF signal to probe intracellular medium of biological samples. Indeed, these sensors use an RF planar resonator that allows detection capabilities on less than 10 cells, thanks to the microscopic size of its sensitive area. Especially, measurements between 15 and 35 GHz show the ability label-free biosensors to differentiate two human cell types using their own electromagnetic characteristics. The real part of permittivity of cells changes from 20 to 48 for the nervous system cell types studied. The proposed biodetection method is detailed and we show how the accuracy and the repeatability of measurements have been improved to reach reproducible measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

M. Santhosh, Neelakandan, Vasyl Shvalya, Martina Modic, Nataša Hojnik, Janez Zavašnik, Jaka Olenik, Martin Košiček, Gregor Filipič, Ibrahim Abdulhalim und Uroš Cvelbar. „Label‐Free Mycotoxin Raman Identification by High‐Performing Plasmonic Vertical Carbon Nanostructures“. Small 17, Nr. 49 (11.10.2021): 2103677. http://dx.doi.org/10.1002/smll.202103677.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Choi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper und Sunggook Park. „Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis (Small 42/2021)“. Small 17, Nr. 42 (Oktober 2021): 2170220. http://dx.doi.org/10.1002/smll.202170220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Liu, Xinlu, Na Li, Chi Zhang, Xiaoyu Wu, Shoujia Zhang, Gang Dong und Ge Liu. „Identification of metastasis-associated exoDEPs in colorectal cancer using label-free proteomics“. Translational Oncology 19 (Mai 2022): 101389. http://dx.doi.org/10.1016/j.tranon.2022.101389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wu, G., J. Wei, Z. Zheng, J. Ye und S. Zeng. „Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy“. Laser Physics Letters 11, Nr. 6 (16.04.2014): 065602. http://dx.doi.org/10.1088/1612-2011/11/6/065602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wang, Shu, Liwei Jiang, Huiping Du, Xingfu Wang, Liqin Zheng, Lianhuang Li, Shuangmu Zhuo, Xiaoqin Zhu und Jianxin Chen. „Label-free identification of the hippocampus and surrounding structures by multiphoton microscopy“. Laser Physics Letters 13, Nr. 5 (19.04.2016): 055603. http://dx.doi.org/10.1088/1612-2011/13/5/055603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Danielsen, Heidi N., Susan H. Hansen, Florian-Alexander Herbst, Henrik Kjeldal, Allan Stensballe, Per H. Nielsen und Morten S. Dueholm. „Direct Identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry“. Biomolecules 7, Nr. 4 (04.08.2017): 58. http://dx.doi.org/10.3390/biom7030058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Wang, Jue, Yang Luo, Bo Zhang, Ming Chen, Junfu Huang, Kejun Zhang, Weiyin Gao, Weiling Fu, Tianlun Jiang und Pu Liao. „Rapid label-free identification of mixed bacterial infections by surface plasmon resonance“. Journal of Translational Medicine 9, Nr. 1 (2011): 85. http://dx.doi.org/10.1186/1479-5876-9-85.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Xin, Meiguo, Lin Zeng, Di Ran, Xiangmei Chen, Yang Xu, Daoxuan Shi, Yonghong He und Suyi Zhong. „Label-free rapid identification of cooked meat using MIP-quantum weak measurement“. Food and Agricultural Immunology 31, Nr. 1 (01.01.2020): 317–28. http://dx.doi.org/10.1080/09540105.2020.1726879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

van der Pol, Edwin, Leonie de Rond, Frank A. W. Coumans, Elmar L. Gool, Anita N. Böing, Auguste Sturk, Rienk Nieuwland und Ton G. van Leeuwen. „Absolute sizing and label-free identification of extracellular vesicles by flow cytometry“. Nanomedicine: Nanotechnology, Biology and Medicine 14, Nr. 3 (April 2018): 801–10. http://dx.doi.org/10.1016/j.nano.2017.12.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Morales, Paula, Lauren S. Whyte, Roberto Chicharro, María Gómez-Cañas, M. Ruth Pazos, Pilar Goya, Andrew J. Irving, Javier Fernández-Ruiz, Ruth A. Ross und Nadine Jagerovic. „Identification of Novel GPR55 Modulators Using Cell-Impedance-Based Label-Free Technology“. Journal of Medicinal Chemistry 59, Nr. 5 (05.02.2016): 1840–53. http://dx.doi.org/10.1021/acs.jmedchem.5b01331.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Zhang, Chongsheng, Jingjun Bi, Changchang Liu und Ke Chen. „A parameter-free label propagation algorithm for person identification in stereo videos“. Neurocomputing 218 (Dezember 2016): 72–78. http://dx.doi.org/10.1016/j.neucom.2016.08.069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Rollo, Enrica, Enrico Tenaglia, Raphaël Genolet, Elena Bianchi, Alexandre Harari, George Coukos und Carlotta Guiducci. „Label-free identification of activated T lymphocytes through tridimensional microsensors on chip“. Biosensors and Bioelectronics 94 (August 2017): 193–99. http://dx.doi.org/10.1016/j.bios.2017.02.047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Saxena, Chaitanya. „Identification of protein binding partners of small molecules using label-free methods“. Expert Opinion on Drug Discovery 11, Nr. 10 (31.08.2016): 1017–25. http://dx.doi.org/10.1080/17460441.2016.1227316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lundstrom, Kenneth. „Cell-impedance-based label-free technology for the identification of new drugs“. Expert Opinion on Drug Discovery 12, Nr. 4 (März 2017): 335–43. http://dx.doi.org/10.1080/17460441.2017.1297419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Niedieker, Daniel, Frederik GrosserÜschkamp, Anja Schreiner, Katalin Barkovits, Carsten Kötting, Katrin Marcus, Klaus Gerwert und Matthias Vorgerd. „Label-free identification of myopathological features with coherent anti-Stokes Raman scattering“. Muscle & Nerve 58, Nr. 3 (17.05.2018): 456–59. http://dx.doi.org/10.1002/mus.26140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Cheong, Youjin, Young Jin Kim, Heeyoon Kang, Samjin Choi und Hee Joo Lee. „Label-free identification of antibiotic resistant isolates of livingEscherichia coli: Pilot study“. Microscopy Research and Technique 80, Nr. 2 (02.10.2016): 177–82. http://dx.doi.org/10.1002/jemt.22785.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zhang, Qi‐Jie, Yang Chen, Xiao‐Huan Zou, Wei Hu, Min‐Lu Ye, Qi‐Fu Guo, Xue‐Liang Lin, Shang‐Yuan Feng und Ning Wang. „Promoting identification of amyotrophic lateral sclerosis based on label‐free plasma spectroscopy“. Annals of Clinical and Translational Neurology 7, Nr. 10 (19.09.2020): 2010–18. http://dx.doi.org/10.1002/acn3.51194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Spitaleri, Andrea, Denis Garoli, Moritz Schütte, Hans Lehrach, Walter Rocchia und Francesco De Angelis. „Adaptive nanopores: A bioinspired label-free approach for protein sequencing and identification“. Nano Research 14, Nr. 1 (30.09.2020): 328–33. http://dx.doi.org/10.1007/s12274-020-3095-z.

Der volle Inhalt der Quelle
Annotation:
AbstractSingle molecule protein sequencing would tremendously impact in proteomics and human biology and it would promote the development of novel diagnostic and therapeutic approaches. However, its technological realization can only be envisioned, and huge challenges need to be overcome. Major difficulties are inherent to the structure of proteins, which are composed by several different amino-acids. Despite long standing efforts, only few complex techniques, such as Edman degradation, liquid chromatography and mass spectroscopy, make protein sequencing possible. Unfortunately, these techniques present significant limitations in terms of amount of sample required and dynamic range of measurement. It is known that proteins can distinguish closely similar molecules. Moreover, several proteins can work as biological nanopores in order to perform single molecule detection and sequencing. Unfortunately, while DNA sequencing by means of nanopores is demonstrated, very few examples of nanopores able to perform reliable protein-sequencing have been reported so far. Here, we investigate, by means of molecular dynamics simulations, how a re-engineered protein, acting as biological nanopore, can be used to recognize the sequence of a translocating peptide by sensing the “shape” of individual amino-acids. In our simulations we demonstrate that it is possible to discriminate with high fidelity, 9 different amino-acids in a short peptide translocating through the engineered construct. The method, here shown for fluorescence-based sequencing, does not require any labelling of the peptidic analyte. These results can pave the way for a new and highly sensitive method of sequencing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie