Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Label free identification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Label free identification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Label free identification"
Li, Jing, Hua Xu, Graham M. West und Lyn H. Jones. „Label-free technologies for target identification and validation“. MedChemComm 7, Nr. 5 (2016): 769–77. http://dx.doi.org/10.1039/c6md00045b.
Der volle Inhalt der QuelleNickelsen, Anna, und Joachim Jose. „Label-free flow cytometry-based enzyme inhibitor identification“. Analytica Chimica Acta 1179 (September 2021): 338826. http://dx.doi.org/10.1016/j.aca.2021.338826.
Der volle Inhalt der QuelleLloyd, William R., Shailesh Agarwal, Sagar U. Nigwekar, Karen Esmonde-White, Shawn Loder, Shawn Fagan, Jeremy Goverman et al. „Raman spectroscopy for label-free identification of calciphylaxis“. Journal of Biomedical Optics 20, Nr. 8 (11.08.2015): 080501. http://dx.doi.org/10.1117/1.jbo.20.8.080501.
Der volle Inhalt der QuelleLi, Huafeng, Qingsong Hu und Zhanxuan Hu. „Catalyst for Clustering-Based Unsupervised Object Re-identification: Feature Calibration“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 4 (24.03.2024): 3091–99. http://dx.doi.org/10.1609/aaai.v38i4.28092.
Der volle Inhalt der QuelleChoi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper und Sunggook Park. „Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis“. Small 17, Nr. 42 (23.09.2021): 2102567. http://dx.doi.org/10.1002/smll.202102567.
Der volle Inhalt der QuelleChoi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper und Sunggook Park. „Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis“. Small 17, Nr. 42 (23.09.2021): 2102567. http://dx.doi.org/10.1002/smll.202102567.
Der volle Inhalt der QuelleDannhauser, David, Paolo Antonio Netti und Filippo Causa. „Label-free scattering snapshot classification for living cell identification“. EPJ Web of Conferences 309 (2024): 10021. http://dx.doi.org/10.1051/epjconf/202430910021.
Der volle Inhalt der QuellePaidi, Santosh Kumar, Soumik Siddhanta, Robert Strouse, James B. McGivney, Christopher Larkin und Ishan Barman. „Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy“. Analytical Chemistry 88, Nr. 8 (08.04.2016): 4361–68. http://dx.doi.org/10.1021/acs.analchem.5b04794.
Der volle Inhalt der QuelleFaria, Henrique Antonio Mendonça, und Valtencir Zucolotto. „Label-free electrochemical DNA biosensor for zika virus identification“. Biosensors and Bioelectronics 131 (April 2019): 149–55. http://dx.doi.org/10.1016/j.bios.2019.02.018.
Der volle Inhalt der QuelleBae, Euiwon, Nan Bai, Amornrat Aroonnual, Arun K. Bhunia und E. Daniel Hirleman. „Label-free identification of bacterial microcolonies via elastic scattering“. Biotechnology and Bioengineering 108, Nr. 3 (10.11.2010): 637–44. http://dx.doi.org/10.1002/bit.22980.
Der volle Inhalt der QuelleDissertationen zum Thema "Label free identification"
Wang, Yunmiao. „Microgap Structured Optical Sensor for Fast Label-free DNA Detection“. Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32875.
Der volle Inhalt der QuelleMaster of Science
Mohammed, Kader Hamno. „Development of a label-free biosensor method for the identification of sticky compounds which disturb GPCR-assays“. Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220645.
Der volle Inhalt der QuelleHughes, Juanita Maree. „A novel identification method for ultra trace detection of biomolecules using functionalised Surface Enhanced Raman Spectroscopy (SERS)“. Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/72864/2/Juanita_Hughes_Thesis.pdf.
Der volle Inhalt der QuelleJemfer, Charlotte. „Couplage SdFFF et UHF-DEP : Technologie innovante d'isolement et de caractérisation des CSC appliquée au diagnostic et à la thérapie du cancer colorectal“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0112.
Der volle Inhalt der QuelleCancer stem cells (CSCs) play a central role in cellular heterogeneity and tumour progression in colorectal cancer (CRC). However, their isolation is a challenge using conventional methods based on fluorescent or magnetic labelling. These methods remain uncertain due to the plasticity of CSCs, thus limiting their clinical usefulness. In this study, we propose an innovative coupling between cell sorting fractionation by sedimentation flow-force coupling (SdFFF) and the ultra-high frequency biosensor detection method (UHF-DEP), both label-free methods. This approach has already demonstrated its effectiveness in glioblastoma, and our aim is to demonstrate its universality and its application to other types of cancer such as CRC. This coupling requires instrumental and methodological adaptation to the mobile phase of the two technologies. Functional and phenotypic analysis and, for the first time, transcriptomic analysis revealed that SdFFF was capable of isolating a CSC-enriched subpopulation. These characteristics are correlated with specific electromagnetic signatures (SEM) obtained by the UHF-DEP biosensor, thus demonstrating the effectiveness of the SdFFF/UHF-DEP coupling for the isolation and characterisation of CSCs in the CRC. These signatures correlate not only with the strain status of the populations, but also with changes in membrane properties, as revealed by transcriptomic analysis.To further explore the interest of this coupling, we explored its potential to analyse the effects of 5-fluorouracil (5-FU, a key chemotherapy in the treatment of CRC) on isolated sub-populations. We compared the SEM and transcriptomic analysis of these CSC sub-populations, with the aim of identifying the changes induced, opening up potential applications in diagnosis and therapeutic monitoring. Finally, SEM and RNA-Seq analysis of a heterogeneous cell population treated with 5-FU, sorted and then characterised, made it possible to assess the coupling's ability to identify residual cancer stem cells (CSCs) after treatment. The results suggest a reduction in the CSC population after treatment, underlining the potential of this approach for assessing therapeutic efficacy and the changes induced by chemotherapy on CSCs. This work demonstrates the potential of SdFFF/UHF-DEP coupling as a diagnostic and treatment personalisation tool in oncology, offering promising prospects for more accurate assessment of therapeutic response and optimisation of treatment strategies according to cell profile
Chan, Janet Nga Yung. „A label- and immobilization-free proteomic approach for identification of targets of drugs“. 2009. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=958044&T=F.
Der volle Inhalt der QuelleWen-ChangTzeng und 曾文璋. „Identification of metastasis related phosphotyrosine proteins in response to tyrosine kinase inhibitor treatment in human lung cancer cells using label-free quantitative analysis“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/53742724473299540703.
Der volle Inhalt der QuelleSeibert, C., B. R. Davidson, B. J. Fuller, Laurence H. Patterson, W. J. Griffiths und Y. Wang. „Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry“. 2009. http://hdl.handle.net/10454/6179.
Der volle Inhalt der QuelleBuchteile zum Thema "Label free identification"
Hendriks, Ivo A., und Alfred C. O. Vertegaal. „Label-Free Identification and Quantification of SUMO Target Proteins“. In Methods in Molecular Biology, 171–93. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6358-4_13.
Der volle Inhalt der QuelleHiggs, Richard E., Michael D. Knierman, Valentina Gelfanova, Jon P. Butler und John E. Hale. „Label-Free LC-MS Method for the Identification of Biomarkers“. In Methods in Molecular Biology™, 209–30. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-117-8_12.
Der volle Inhalt der QuelleLiang, Xinmiao, Jixia Wang, Xiuli Zhang und Ye Fang. „Label-Free Cell Phenotypic Identification of Active Compounds in Traditional Chinese Medicines“. In Methods in Pharmacology and Toxicology, 233–52. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2617-6_13.
Der volle Inhalt der QuelleHu, Heidi, Huayun Deng und Ye Fang. „Label-Free Cell Phenotypic Identification of d-Luciferin as an Agonist for GPR35“. In Bioluminescence, 3–17. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3813-1_1.
Der volle Inhalt der QuelleLi, Shalan, Haitao Zan, Zhe Zhu, Dandan Lu und Leonard Krall. „Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discovery Software“. In Plant Phosphoproteomics, 179–87. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1625-3_13.
Der volle Inhalt der QuelleSharma, Kanika, Prashant Kaushal und Vikas Kumar. „Proteomic Identification and Label-Free Quantification of Proteins Implicated in Neurite and Spine Formation“. In Methods in Molecular Biology, 133–43. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3969-6_10.
Der volle Inhalt der QuelleHoltz, Anja, Nathan Basisty und Birgit Schilling. „Quantification and Identification of Post-Translational Modifications Using Modern Proteomics“. In Methods in Molecular Biology, 225–35. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1024-4_16.
Der volle Inhalt der QuelleLi, Shalan, Haitao Zan, Zhe Zhu, Dandan Lu und Leonard Krall. „Correction to: Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software“. In Plant Phosphoproteomics, C1. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1625-3_18.
Der volle Inhalt der QuelleVis, Bradley, Jonathan J. Powell und Rachel E. Hewitt. „Label-Free Identification of Persistent Particles in Association with Primary Immune Cells by Imaging Flow Cytometry“. In Methods in Molecular Biology, 135–48. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3020-4_8.
Der volle Inhalt der QuelleNée, Guillaume, Priyadarshini Tilak und Iris Finkemeier. „A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification“. In Methods in Molecular Biology, 257–71. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0528-8_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Label free identification"
Pirone, Daniele, Beatrice Cavina, Martina Mugnano, Vittorio Bianco, Lisa Miccio, Anna Myriam Perrone, Anna Maria Porcelli et al. „Label-free identification of T-lymphocytes in holographic microscopy empowered by machine learning“. In Digital Holography and Three-Dimensional Imaging, W4A.15. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w4a.15.
Der volle Inhalt der QuelleYang, Bin, Jianyu Ren und Wei Xiong. „Label-free identification of tumor tissues by coherent nonlinear vibrational mode imaging“. In Ultrafast Nonlinear Imaging and Spectroscopy XII, herausgegeben von Zhiwen Liu, Demetri Psaltis und Kebin Shi, 16. SPIE, 2024. http://dx.doi.org/10.1117/12.3027676.
Der volle Inhalt der QuelleEltigani, Faihaa Mohammed, Nebras Ahmed Mohamed und Xuantao Su. „Light scattering imaging combined with machine learning for label-free identification of live yeast cells“. In Third Conference on Biomedical Photonics and Cross-Fusion (BPC 2024), herausgegeben von Zhenxi Zhang, Junle Qu und Buhong Li, 19. SPIE, 2024. http://dx.doi.org/10.1117/12.3039875.
Der volle Inhalt der QuelleHahm, Tae-Hun, Kristine Glunde und Alison Scott. „FluoMALDI imaging of the immune response for label-free in situ identification of phagocytes in Francisella novicida-infected mouse tissues“. In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXIII, herausgegeben von Attila Tarnok, Jessica P. Houston und Xuantao Su, 19. SPIE, 2025. https://doi.org/10.1117/12.3041947.
Der volle Inhalt der QuelleBélanger, Erik, Gabrielle Jess, Jean-Honoré Laurent, Corentin Soubeiran, Céline Larivière-Loiselle, Sara Mattar, Niraj Patel et al. „Progress and advances in the development of a label-free optofluidic platform based on quantitative phase digital holographic microscopy and microfluidics for the identification of human disease-specific cell phenotypes (Conference Presentation)“. In Microfluidics, BioMEMS, and Medical Microsystems XXIII, herausgegeben von Bastian E. Rapp und Colin Dalton, 11. SPIE, 2025. https://doi.org/10.1117/12.3042226.
Der volle Inhalt der QuelleGesley, Mark A., Robert Goldsby, Stephen M. Lane und Romin Puri. „Spectral image microscopy for label-free blood and cancer cell identification“. In Label-free Biomedical Imaging and Sensing (LBIS) 2019, herausgegeben von Natan T. Shaked und Oliver Hayden. SPIE, 2019. http://dx.doi.org/10.1117/12.2507474.
Der volle Inhalt der QuellePourrahimi, Monireh, Samaneh Ghazanfarpour, Alireza Sheikhsofla, Rafael Pena, Jennifer Morrissey, Sujith Chander Reddy Kollampally, Anna Sharikova, Yubing Xie, Melinda Larsen und Alexander Khmaladze. „Detection and identification of alginate in tissue-freezing media samples using Raman spectroscopy“. In Label-free Biomedical Imaging and Sensing (LBIS) 2024, herausgegeben von Natan T. Shaked und Oliver Hayden. SPIE, 2024. http://dx.doi.org/10.1117/12.3003876.
Der volle Inhalt der QuelleLe Galudec, Joel, Mathieu Dupoy und Pierre Marcoux. „Multispectral lensless imaging in the mid-infrared for label-free identification of Staphylococcus species“. In Label-free Biomedical Imaging and Sensing (LBIS) 2021, herausgegeben von Natan T. Shaked und Oliver Hayden. SPIE, 2021. http://dx.doi.org/10.1117/12.2578264.
Der volle Inhalt der QuelleBruno, Giulia, Koseki J. Kobayashi-Kirschvink, Michal Lipinski, Christian Tentellino, Peter T. C. So, Paola Arlotta, Jeon Woong Kang und Francesco De Angelis. „Label-free identification of biochemical variations in brain organoid maturation stages through Raman spectroscopy“. In Label-free Biomedical Imaging and Sensing (LBIS) 2024, herausgegeben von Natan T. Shaked und Oliver Hayden. SPIE, 2024. http://dx.doi.org/10.1117/12.3001590.
Der volle Inhalt der QuelleMarzi, Anne, Ilona Nordhorn, Kai Eder, Martin Wiemann, Uwe Karst, Björn Kemper und Jürgen Schnekenburger. „Label-free identification and quantification of nanoparticles in single cells by combining digital holographic microscopy and mass spectrometry“. In Label-free Biomedical Imaging and Sensing (LBIS) 2022, herausgegeben von Natan T. Shaked und Oliver Hayden. SPIE, 2022. http://dx.doi.org/10.1117/12.2609700.
Der volle Inhalt der Quelle