Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „L0 regularization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "L0 regularization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "L0 regularization"
Zhu, Jiehua, und Xiezhang Li. „A Smoothed l0-Norm and l1-Norm Regularization Algorithm for Computed Tomography“. Journal of Applied Mathematics 2019 (02.06.2019): 1–8. http://dx.doi.org/10.1155/2019/8398035.
Der volle Inhalt der QuelleLi, Xiezhang, Guocan Feng und Jiehua Zhu. „An Algorithm of l1-Norm and l0-Norm Regularization Algorithm for CT Image Reconstruction from Limited Projection“. International Journal of Biomedical Imaging 2020 (28.08.2020): 1–6. http://dx.doi.org/10.1155/2020/8873865.
Der volle Inhalt der QuelleFan, Qinwei, und Ting Liu. „Smoothing L0 Regularization for Extreme Learning Machine“. Mathematical Problems in Engineering 2020 (06.07.2020): 1–10. http://dx.doi.org/10.1155/2020/9175106.
Der volle Inhalt der QuelleLee, Kyung-Sik. „Signomial Classification Method with0-regularization“. IE interfaces 24, Nr. 2 (01.06.2011): 151–55. http://dx.doi.org/10.7232/ieif.2011.24.2.151.
Der volle Inhalt der QuelleZhou, Xiaoqing, Rongrong Hou und Yuhan Wu. „Structural damage detection based on iteratively reweighted l1 regularization algorithm“. Advances in Structural Engineering 22, Nr. 6 (07.12.2018): 1479–87. http://dx.doi.org/10.1177/1369433218817138.
Der volle Inhalt der QuelleLi, Kun, Na Qi und Qing Zhu. „Fluid Simulation with an L0 Based Optical Flow Deformation“. Applied Sciences 10, Nr. 18 (12.09.2020): 6351. http://dx.doi.org/10.3390/app10186351.
Der volle Inhalt der QuelleFrommlet, Florian, und Grégory Nuel. „An Adaptive Ridge Procedure for L0 Regularization“. PLOS ONE 11, Nr. 2 (05.02.2016): e0148620. http://dx.doi.org/10.1371/journal.pone.0148620.
Der volle Inhalt der QuelleZhang, Lingli, und An Luo. „l1/2 regularization for wavelet frames based few-view CT reconstruction“. E3S Web of Conferences 269 (2021): 01020. http://dx.doi.org/10.1051/e3sconf/202126901020.
Der volle Inhalt der QuelleWang, Guodong. „Image Decomposition Model OSV with L0 Sparse Regularization“. Journal of Information and Computational Science 12, Nr. 2 (20.01.2015): 743–50. http://dx.doi.org/10.12733/jics20105230.
Der volle Inhalt der QuelleChristou, Antonis, und Andreas Artemiou. „Adaptive L0 Regularization for Sparse Support Vector Regression“. Mathematics 11, Nr. 13 (22.06.2023): 2808. http://dx.doi.org/10.3390/math11132808.
Der volle Inhalt der QuelleDissertationen zum Thema "L0 regularization"
Bechensteen, Arne. „Optimisation L2-L0 contrainte et application à la microscopie à molécule unique“. Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4068.
Der volle Inhalt der QuelleSparse optimization is crucial in today's society, as this is used in multiple domains, such as denoising, compression, machine learning, and variable selection. Sparse optimization is also vital in single-molecule localization microscopy, a microscopy method widely used in biology. However, obtaining a good sparse solution of a signal is computationally challenging. This thesis focuses on sparse optimization in the form of minimizing the least square loss function under a k-sparse constraint with an L0 pseudo-norm (the constrained L2-L0 problem). We also study the sum of the least square loss function and an L0 penalty term (the penalized L2-L0 problem). Both problems are non-convex, non-continuous, and NP-hard. We propose three new approaches to sparse optimization. We present first a continuous relaxation of the constrained problem and present a method to minimize the proposed relaxation. Secondly, we reformulate the L0 pseudo-norm as a convex minimization problem. This is done by introducing an auxiliary variable, and we present an exact biconvex reformulation of the constrained (CoBic) and penalized (PeBic) problems. Finally, we present a method to minimize the product of the data fidelity term and the regularization term. The latter is still an ongoing research work. We apply the three proposed methods (relaxation, CoBic, and PeBic) to single-molecule localization microscopy and compare them with other commonly used algorithms in sparse optimization. The proposed algorithms' results are as good as the state-of-the-art in grid-based methods. Furthermore, fixing the sparsity constraint constant is usually more intuitive than fixing the penalty parameter, making the constraint approach attractive for applications
Delmer, Alice. „Goniométrie parcimonieuse de sources radioélectriques : modèles, algorithmes et mises en œuvre robustes“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG085.
Der volle Inhalt der QuelleThis thesis deals with the direction-of-arrival (DOA) estimation of non-cooperative radio transmitters from signals received on an antenna array. The applications targeted in this work are the airborne scenario, characterized by a number of sources higher than the number of sensors, and the urban environment scenario, characterized by coherent multipath.Conventional direction-of-arrival estimation methods such as beamforming and Capon method or high resolution methods such as MUSIC are not efficient in such scenarios. The maximum likelihood method suffers from a computational complexity incompatible with current operational systems.In order to overcome these limitations, the problem of direction-of-arrival estimation is treated here with a sparse formalism, perfectly adapted to the use of calibration tables in operational systems. After having shown the interests of an approach based on a regularization by the L0 norm, this thesis tackles the technical issues that are the regularization parameter and the global convergence of optimization algorithms. To this end, we construct and statistically study sparse representations adapted to i) airborne scenarios, and ii) urban environments. The equivalence with the maximum likelihood given by a constrained formulation then allows us to determine a theoretical admissible interval for the regularization parameter. We also study the minimizers and error surfaces of different optimization criteria. This allows us to propose iterative minimization schemes that increase the probability of global convergence and thus are less sensitive to initialization. In that respect, the proposed ALICE-L0 algorithm enables to separate close sources
Arceci, Francesca. „Variational algorithms for image Super Resolution“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19509/.
Der volle Inhalt der QuelleBuchteile zum Thema "L0 regularization"
Wang, Liansheng, Xinyue Li, Yiping Chen und Jing Qin. „Application of L0-Norm Regularization to Epicardial Potential Reconstruction“. In Lecture Notes in Computer Science, 493–500. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24571-3_59.
Der volle Inhalt der QuelleLi, Li, Fangwan Huang und Zhiyong Yu. „Echo State Network Based on L0 Norm Regularization for Chaotic Time Series Prediction“. In Green, Pervasive, and Cloud Computing, 145–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64243-3_12.
Der volle Inhalt der QuelleShi, Mingzhu. „A Novel Gradient L0-Norm Regularization Image Restoration Method Based on Non-local Total Variation“. In Lecture Notes in Electrical Engineering, 487–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9409-6_57.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "L0 regularization"
Chen, Jun, Zemin Cai, Xiaohua Xie und Jianhuang Lai. „Motion Estimation with L0 Norm Regularization“. In 2021 IEEE 7th International Conference on Virtual Reality (ICVR). IEEE, 2021. http://dx.doi.org/10.1109/icvr51878.2021.9483834.
Der volle Inhalt der QuelleGuo, Yang, Tai Gao, Chengzhi Deng, Shengqian Wang und JianPing Xiao. „Sparse Unmixing using an approximate L0 Regularization“. In First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.189.
Der volle Inhalt der QuelleFormanek, Andras, und Daniel Hadhazi. „Compressing Convolutional Neural Networks by L0 Regularization“. In 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). IEEE, 2019. http://dx.doi.org/10.1109/iccairo47923.2019.00032.
Der volle Inhalt der QuelleLi, Haoxiang, und Jianmin Zheng. „L0-Regularization based Material Design for Hexahedral Mesh Models“. In CAD'21. CAD Solutions LLC, 2021. http://dx.doi.org/10.14733/cadconfp.2021.314-318.
Der volle Inhalt der QuelleXie, Qixin, Chao Li, Boyu Diao, Zhulin An und Yongjun Xu. „L0 Regularization based Fine-grained Neural Network Pruning Method“. In 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2019. http://dx.doi.org/10.1109/ecai46879.2019.9041962.
Der volle Inhalt der QuelleDe Boom, Cedric, Samuel Wauthier, Tim Verbelen und Bart Dhoedt. „Dynamic Narrowing of VAE Bottlenecks Using GECO and L0 Regularization“. In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533671.
Der volle Inhalt der QuelleZhenxing, Liu, und Zeng Xueying. „Mixed impulse and Gaussian noise removal using L0 sparse regularization“. In Twelfth International Conference on Graphics and Image Processing, herausgegeben von Zhigeng Pan und Xinhong Hei. SPIE, 2021. http://dx.doi.org/10.1117/12.2589376.
Der volle Inhalt der QuelleHan, Xiaoyu, Yannan Yang und Wende Dong. „Image denoising based on hybrid L0 and L1-norm regularization“. In Novel Imaging System, herausgegeben von Bo Liu, Yan Zhou, Qiang Zhang und Feihu Xu. SPIE, 2024. http://dx.doi.org/10.1117/12.3015106.
Der volle Inhalt der QuelleDelmer, Alice, Anne Ferreol und Pascal Larzabal. „On Regularization Parameter for L0-Sparse Covariance Fitting Based DOA Estimation“. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053963.
Der volle Inhalt der QuelleGuo, Kaiwen, Feng Xu, Yangang Wang, Yebin Liu und Qionghai Dai. „Robust Non-rigid Motion Tracking and Surface Reconstruction Using L0 Regularization“. In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015. http://dx.doi.org/10.1109/iccv.2015.353.
Der volle Inhalt der Quelle