Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Kynureniny“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Kynureniny" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Kynureniny"
Chen, Yiquan, und Gilles J. Guillemin. „Kynurenine Pathway Metabolites in Humans: Disease and Healthy States“. International Journal of Tryptophan Research 2 (Januar 2009): IJTR.S2097. http://dx.doi.org/10.4137/ijtr.s2097.
Der volle Inhalt der QuelleMajláth, Zsófia, und László Vécsei. „A kinureninrendszer és a stressz“. Orvosi Hetilap 156, Nr. 35 (August 2015): 1402–5. http://dx.doi.org/10.1556/650.2015.30246.
Der volle Inhalt der QuelleZakharov, Gennady A., Alexander V. Zhuravlev, Tatyana L. Payalina, Nikolay G. Kamyshev und Elena V. Savvateeva-Popova. „The influence of D. melanogaster mutations of the kynurenine pathway of tryptophan metabolism on locomotor behavior and expression of genes belonging to glutamatergic and cholinergic systems“. Ecological genetics 9, Nr. 2 (15.06.2011): 65–73. http://dx.doi.org/10.17816/ecogen9265-73.
Der volle Inhalt der QuelleBüki, Alexandra, Gabriella Kekesi, Gyongyi Horvath und László Vécsei. „A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia“. International Journal of Molecular Sciences 22, Nr. 18 (16.09.2021): 10016. http://dx.doi.org/10.3390/ijms221810016.
Der volle Inhalt der QuelleHafstad Solvang, Stein-Erik, Jan Erik Nordrehaug, Dag Aarsland, Johannes Lange, Per Magne Ueland, Adrian McCann, Øivind Midttun, Grethe S. Tell und Lasse Melvaer Giil. „Kynurenines, Neuropsychiatric Symptoms, and Cognitive Prognosis in Patients with Mild Dementia“. International Journal of Tryptophan Research 12 (Januar 2019): 117864691987788. http://dx.doi.org/10.1177/1178646919877883.
Der volle Inhalt der QuelleSzűcs, Edina, Azzurra Stefanucci, Marilisa Pia Dimmito, Ferenc Zádor, Stefano Pieretti, Gokhan Zengin, László Vécsei, Sándor Benyhe, Marianna Nalli und Adriano Mollica. „Discovery of Kynurenines Containing Oligopeptides as Potent Opioid Receptor Agonists“. Biomolecules 10, Nr. 2 (12.02.2020): 284. http://dx.doi.org/10.3390/biom10020284.
Der volle Inhalt der QuelleTheofylaktopoulou, Despoina, Arve Ulvik, Øivind Midttun, Per Magne Ueland, Stein Emil Vollset, Ottar Nygård, Steinar Hustad, Grethe S. Tell und Simone J. P. M. Eussen. „Vitamins B2and B6as determinants of kynurenines and related markers of interferon-γ-mediated immune activation in the community-based Hordaland Health Study“. British Journal of Nutrition 112, Nr. 7 (08.08.2014): 1065–72. http://dx.doi.org/10.1017/s0007114514001858.
Der volle Inhalt der QuelleErvik, Arne Olav, Stein-Erik Hafstad Solvang, Jan Erik Nordrehaug, Per Magne Ueland, Øivind Midttun, Audun Hildre, Adrian McCann, Ottar Nygård, Dag Aarsland und Lasse Melvaer Giil. „The Associations Between Cognitive Prognosis and Kynurenines Are Modified by the Apolipoprotein ε4 Allele Variant in Patients With Dementia“. International Journal of Tryptophan Research 12 (Januar 2019): 117864691988563. http://dx.doi.org/10.1177/1178646919885637.
Der volle Inhalt der QuelleFukuwatari, Tsutomu. „Possibility of Amino Acid Treatment to Prevent the Psychiatric Disorders via Modulation of the Production of Tryptophan Metabolite Kynurenic Acid“. Nutrients 12, Nr. 5 (13.05.2020): 1403. http://dx.doi.org/10.3390/nu12051403.
Der volle Inhalt der QuelleRuddick, Jon P., Andrew K. Evans, David J. Nutt, Stafford L. Lightman, Graham A. W. Rook und Christopher A. Lowry. „Tryptophan metabolism in the central nervous system: medical implications“. Expert Reviews in Molecular Medicine 8, Nr. 20 (August 2006): 1–27. http://dx.doi.org/10.1017/s1462399406000068.
Der volle Inhalt der QuelleDissertationen zum Thema "Kynureniny"
Urenjak, Jutta A., und Tihomir P. Obrenovitch. „Accumulation of quinolinic acid with euro-inflammation: does it mean excitotoxicity?“ Thesis, Kluwer Academic, Plenum Publishers, New York, 2003. http://hdl.handle.net/10454/2833.
Der volle Inhalt der QuelleTutakhail, Abdulkarim. „Potential muscular doping effects of anti-depressants“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS513.
Der volle Inhalt der QuelleAs much as the psychotropic effect of antidepressants is well known, correcting the consequences of stress and boosting self-confidence, so many other pharmacological effects, peripheral in particular, remain to be deepened. Serotonin reuptake inhibitor antidepressants (SSRIs) may have a beneficial effect on physical performance by participating in faster muscle repair and growth. It has recently been shown that serotonin was involved in the recovery of muscle strength in a mouse model of Duchenne myopathy (Gurel et al., 2015).Antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are widely used to treat various mental health disorders, such as moderate-to-severe depression and anxiety. Both symptoms contribute to insomnia, loss of appetite, lack of motivation and increased physical fatigue. These symptoms can impair physical performances for athletes, more specifically for those who develop sport-specific skills and techniques, receive higher training volumes at various intensities, and participate in more frequent competitions. Therefore athletes may use drugs that enhance motivation and/or improve overall fitness by reducing depressive symptoms. The use of antidepressants is not yet forbidden in elite sports. Recent reports on doping associated with SSRIs show an increasing trend of its usage among healthy athletes. The antidepressants intake among athletes has increased in different sports over the last decade, especially endurance sports. The antidepressants Bupropion and Amineptine were removed from the list of banned substances.Our project must therefore make it possible to characterize the consequences of chronic treatment with SSRIs on the physical performance in mice and to highlight the mechanism (s) involved, in particular the variation of the serotonin / kynurenine metabolic shunt, as well as the modifications of biomarkers, potentially usable variations in humans in the fight against doping.We would like to elucidate our research work in the following articles:Article 1: We studied the effects of exercise and fluoxetine alone or in combination of long-term fluoxetine treatment (18mg/kg/day) and endurance physical exercise (six weeks) in male balbC/j mice, on animal treadmill. Subsequently we evaluated neurobehavioral activity, muscle markers of oxidative stress, and changes in tryptophan metabolism in plasma, muscle and brain tissues in the BalbC/J mice. Generally we focused on the highest aerobic velocity, endurance time until exhaustion, forelimb muscle strength by gripping strength meter, neurobehavioral tests such as open field and elevated plus maze test, mitochondrial enzyme activity (Citrate synthase and cytochrome-C oxidase activity) in gastrocnemius muscle, oxidative stress marker such as DHE (Dihydroethidium) and DCF-DA (Dichlorofluorscine di-acetate)test.Article 2: We studied the effects of exercise and fluoxetine alone or combinative effects of long-term fluoxetine treatment (18mg/kg/day) and endurance physical exercise (six weeks) in male balbC/j mice, on animal treadmill. After the mentioned exercise protocol we focused on changes in tryptophan (TRP) metabolism in plasma, muscle and brain tissues in the BalbC/J mice. To confirm the metabolomic, we also studied the KP related enzyme related genes and proteins by the modern required materials and methods. We correlated the result of article1 with the metabolites level of kynurenine pathway of tryptophan metabolism. We studied the expression of transcriptor factor PGC1α level in muscle which is induced by physical exercise(Agudelo et al., 2014). PGC1α subsequently induce the expression of kynurenine aminotransferase 1 and 2 (KAT1 and KAT2) in skeletal muscles, which convert kynurenine (KYN) to kynurenic acid (KYNA). Conversion of kynurenine to kynurenic acid decrease the level of kynurenine and quinolinic acid an NMDA receptor agonist and a neurotoxic compound
Pershing, Michelle. „Acute elevations in kynurenic acid result in cognitive inflexibility in an attentinal set-shfiting task via an alpha 7-mediated mechanism“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354032404.
Der volle Inhalt der QuelleMilne, Gavin D. S. „Inhibition studies of kynurenine 3-monooxygenase“. Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4101.
Der volle Inhalt der QuelleThevandavakkam, Mathuravani Aaditiyaa. „Deciphering the kynurenine-3-monooxygenase interactome“. Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/10070.
Der volle Inhalt der QuelleMackay, Gillian Moira. „Kynurenines in neurological disorders“. Thesis, University of Glasgow, 2007. http://theses.gla.ac.uk/39/.
Der volle Inhalt der QuelleBell, Helen Barbara. „Characterisation of the active site of kynurenine 3-monooxygenase“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20397.
Der volle Inhalt der QuelleOwe-Young, Robert School of Medicine UNSW. „Kynurenine pathway metabolism at the blood-brain barrier“. Awarded by:University of New South Wales. School of Medicine, 2006. http://handle.unsw.edu.au/1959.4/26183.
Der volle Inhalt der QuelleTaylor, Mark Robert Duncan. „High-resolution structural studies of kynurenine 3-monooxygenase“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28913.
Der volle Inhalt der QuelleWilkinson, Martin. „Structural dynamics and ligand binding in kynurenine-3-monooxygenase“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7965.
Der volle Inhalt der QuelleBücher zum Thema "Kynureniny"
Schwarcz, Robert, Simon N. Young und Raymond R. Brown, Hrsg. Kynurenine and Serotonin Pathways. Boston, MA: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-5952-4.
Der volle Inhalt der QuelleMittal, Sandeep, Hrsg. Targeting the Broadly Pathogenic Kynurenine Pathway. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11870-3.
Der volle Inhalt der QuelleRobert, Schwarcz, Young Simon N und Brown Raymond R, Hrsg. Kynurenine and serotonin pathways: Progress in tryptophan research. New York: Plenum Press, 1991.
Den vollen Inhalt der Quelle findenRickards, Edward Hugh Galbraith. Plasma kynurenine tryptophan metabolites and associated substances in Gilles de la Tourette's Syndrome. Birmingham: University of Birmingham, 1999.
Den vollen Inhalt der Quelle findenLapin, Izjaslav P. The neuroactivities of kynurenines: Stress, anxiety, depression, alcoholism, epilepsy : the 2000 Oswald Schmiedeberg lecture. Tartu: Tartu Ülikool, 2000.
Den vollen Inhalt der Quelle findenMirza, Sarwarbeg. The hepatic and the peripheral metabolism of tryptophan via the kynurenine pathway in children with biliary atresiaand with orthotopic liver transplant: The assessment of the relationship between the levels of the kynurenine metabolites, neopterin, biopterin and liver function tests. [Guildford]: University of Surrey, 1995.
Den vollen Inhalt der Quelle findenNaleem, Wazeer A. A study of urinary kynurenine metabolites in pre-pubertal, pubertal and post-pubertal male offsprings of families with family history negative and family history positive of alcoholism. [Guildford]: University of Surrey, 1995.
Den vollen Inhalt der Quelle findenMittal, Sandeep. Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, 2015.
Den vollen Inhalt der Quelle findenMittal, Sandeep. Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, 2016.
Den vollen Inhalt der Quelle findenW, Stone T., Hrsg. Quinolinic acid and the kynurenines. Boca Raton, Fla: CRC Press, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Kynureniny"
Sewell, A. C. „Kynurenin“. In Springer Reference Medizin, 1417. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_1799.
Der volle Inhalt der QuelleSewell, A. C. „Kynurenin“. In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_1799-1.
Der volle Inhalt der QuelleSchomburg, Dietmar, und Dörte Stephan. „Kynurenine-oxoglutarate transaminase“. In Enzyme Handbook 13, 235–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59176-1_46.
Der volle Inhalt der QuelleSchomburg, Dietmar, und Dörte Stephan. „Kynurenine-glyoxylate transaminase“. In Enzyme Handbook 13, 491–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59176-1_98.
Der volle Inhalt der QuelleSchomburg, Dietmar, und Dörte Stephan. „Kynurenine 3-monooxygenase“. In Enzyme Handbook, 433–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57942-4_91.
Der volle Inhalt der QuelleRudzite, V., und E. Jurika. „Kynurenine and Lipid Metabolism“. In Advances in Experimental Medicine and Biology, 463–66. Boston, MA: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-5952-4_45.
Der volle Inhalt der QuelleMajláth, Zsófia, Levente Szalárdy, Dénes Zádori, Péter Klivényi, Ferenc Fülöp, József Toldi und László Vécsei. „Neuroprotection by Kynurenine Metabolites“. In Handbook of Neurotoxicity, 1403–16. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-5836-4_165.
Der volle Inhalt der QuelleSchomburg, Dietmar, und Dörte Stephan. „Kynurenine 7, 8-hydroxylase“. In Enzyme Handbook, 745–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57942-4_154.
Der volle Inhalt der QuelleMinatogawa, Y., C. Kawai, S. Hatada und M. Sato. „Liver Specific Kynurenine (Alanine)“. In Advances in Experimental Medicine and Biology, 471–76. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0381-7_73.
Der volle Inhalt der QuelleLapin, I. P. „Kynurenines and Anxiety“. In Advances in Experimental Medicine and Biology, 191–94. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0381-7_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Kynureniny"
Sordillo, Laura A., Peter P. Sordillo, Lin Zhang und Robert R. Alfano. „Tryptophan and kynurenines in neurodegenerative disease“. In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/boda.2019.jt4a.8.
Der volle Inhalt der QuelleGosker, Harry R., Gerard Clarke, John F. Cryan und Annemie M. Schols. „Impaired skeletal muscle kynurenine metabolism in patients with COPD“. In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa940.
Der volle Inhalt der QuelleTharawadeephimuk, Waranan, Chaiyavat Chaiyasut, Sasithorn Sirilun und Phakkharawat Sittiprapaporn. „Preliminary Study of Probiotics and Kynurenine Pathway in Autism Spectrum Disorder“. In 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2019. http://dx.doi.org/10.1109/ecti-con47248.2019.8955380.
Der volle Inhalt der QuellePinto, Sheena, Christoph Steeneck, Michael Albers, Simon Anderhub, Manfred Birkel, Larisa Buselic-Wölfel, Gisela Eisenhardt, Claus Kremoser, Thomas Hoffmann und Ulrich Deuschle. „Abstract 1210: Targeting the IDO1-Kynurenine-AhR pathway for cancer immunotherapy“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1210.
Der volle Inhalt der QuelleTriplett, Todd A., Kendra Triplett, Everett Stone, Michelle Zhang, Mark Manfredi, Candice Lamb, Yuri Tanno, Lauren Ehrlich und George Georgiou. „Abstract 5571: Immune-checkpoint inhibition via enzyme-mediated degradation of kynurenine“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5571.
Der volle Inhalt der QuellePinto, Sheena, Christoph Steeneck, Michael Albers, Simon Anderhub, Manfred Birkel, Larisa Buselic-Wölfel, Gisela Eisenhardt, Claus Kremoser, Thomas Hoffmann und Ulrich Deuschle. „Abstract 1210: Targeting the IDO1-Kynurenine-AhR pathway for cancer immunotherapy“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1210.
Der volle Inhalt der QuelleBreda, Carlo, Aisha M. Swaih, Mariaelena Repici und Flaviano Giorgini. „A29 Kynurenine 3-monooxygenase interacts with huntingtin at the outer mitochondrial membrane“. In EHDN 2018 Plenary Meeting, Vienna, Austria, Programme and Abstracts. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/jnnp-2018-ehdn.27.
Der volle Inhalt der QuelleBotticelli, Andrea, Bruna Cerbelli, Luana Lionetto, Ilaria Zizzari, Annalina Pisano, Michela Roberto, Elisa Onesti et al. „Abstract 5705: The key role of kynurenine in anti-PD-1 failure“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5705.
Der volle Inhalt der QuelleWangpaichitr, Medhi, Chunjing Wu, Dan JM Nguyen, Ying-Ying Li, Lynn G. Feun und Niramol Savaraj. „Abstract 5478: Targeting kynurenine pathway for the treatment of cisplatin-resistant lung cancer“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5478.
Der volle Inhalt der QuelleBessede, Alban, Antoine Italiano, Assia Chaïbi, Christophe Rey, Imane Nafia, Sylvestre le Moulec, Sophie Cousin, Maud Toulmonde, Céline Auzanneau und Marina Pulido. „Abstract 5716: Functional evidence for an immunosuppressive role of kynurenine in cancer patients“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5716.
Der volle Inhalt der Quelle