Zeitschriftenartikel zum Thema „Known and Zero-Day Attacks Detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Known and Zero-Day Attacks Detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Saurabh Kansal. "Utilizing Deep Learning Techniques for Effective Zero-Day Attack Detection." Economic Sciences 21, no. 1 (2025): 246–57. https://doi.org/10.69889/m3jzbt24.
Der volle Inhalt der QuelleNerella Sameera, M.Siva Jyothi, K.Lakshmaji, and V.S.R.Pavan Kumar. Neeli. "Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks." Journal of Advanced Zoology 44, no. 4 (2023): 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Der volle Inhalt der QuelleOhtani, Takahiro, Ryo Yamamoto, and Satoshi Ohzahata. "IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT." Sensors 24, no. 10 (2024): 3218. http://dx.doi.org/10.3390/s24103218.
Der volle Inhalt der QuelleHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne, and Xavier Bellekens. "Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection." Electronics 9, no. 10 (2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Der volle Inhalt der QuelleAbdel Wahed, Mutaz. "AI-Enhanced Threat Intelligence for Proactive Zero-Day Attack Detection." Gamification and Augmented Reality 3 (April 13, 2025): 112. https://doi.org/10.56294/gr2025112.
Der volle Inhalt der QuelleHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut, and Marianne A. Azer. "Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques." Electronics 12, no. 3 (2023): 573. http://dx.doi.org/10.3390/electronics12030573.
Der volle Inhalt der QuelleAlam, Naushad, and Muqeem Ahmed. "Zero-day Network Intrusion Detection using Machine Learning Approach." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 8s (2023): 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Der volle Inhalt der QuelleAL Rafy, Md Mashfiquer Rahman, Sharmin Nahar, Md. Najmul Gony, and MD IMRANUL HOQUE Bhuiyan. "The role of machine learning in predicting zero-day vulnerabilities." International Journal of Science and Research Archive 10, no. 1 (2023): 1197–208. https://doi.org/10.30574/ijsra.2023.10.1.0838.
Der volle Inhalt der QuelleBu, Seok-Jun, and Sung-Bae Cho. "Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection." Electronics 10, no. 12 (2021): 1492. http://dx.doi.org/10.3390/electronics10121492.
Der volle Inhalt der QuelleAl-Rushdan, Huthifh, Mohammad Shurman, and Sharhabeel Alnabelsi. "On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks." International Arab Journal of Information Technology 17, no. 4A (2020): 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Der volle Inhalt der QuelleRodríguez, Eva, Pol Valls, Beatriz Otero, et al. "Transfer-Learning-Based Intrusion Detection Framework in IoT Networks." Sensors 22, no. 15 (2022): 5621. http://dx.doi.org/10.3390/s22155621.
Der volle Inhalt der QuelleLiang, Kai, Chuanfeng Li, and Qiong Duan. "SAEDF: A Synthetic Anomaly-Enhanced Detection Framework for Detection of Unknown Network Attacks." Information Technology and Control 54, no. 2 (2025): 593–612. https://doi.org/10.5755/j01.itc.54.2.40247.
Der volle Inhalt der QuelleSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh, and Paulo J. Sequeira Gonçalves. "Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS)." Sensors 23, no. 12 (2023): 5459. http://dx.doi.org/10.3390/s23125459.
Der volle Inhalt der QuelleMala, V., and K. Meena. "Hybrid classification model to detect advanced intrusions using data mining techniques." International Journal of Engineering & Technology 7, no. 2.4 (2018): 10. http://dx.doi.org/10.14419/ijet.v7i2.4.10031.
Der volle Inhalt der QuelleAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal, and Ki-Il Kim. "Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection." Electronics 11, no. 23 (2022): 3934. http://dx.doi.org/10.3390/electronics11233934.
Der volle Inhalt der QuelleDas, Saikat, Mohammad Ashrafuzzaman, Frederick T. Sheldon, and Sajjan Shiva. "Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks." Algorithms 17, no. 3 (2024): 99. http://dx.doi.org/10.3390/a17030099.
Der volle Inhalt der QuelleSugiyatno, Sugiyatno, and Didik Setiyadi. "Efektivitas Honeynet dalam Mendeteksi Serangan Siber." SATESI: Jurnal Sains Teknologi dan Sistem Informasi 4, no. 1 (2024): 37–42. https://doi.org/10.54259/satesi.v4i1.2658.
Der volle Inhalt der QuelleNkongolo, Mike, Jacobus Philippus van Deventer, and Sydney Mambwe Kasongo. "UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day Threats." Information 12, no. 10 (2021): 405. http://dx.doi.org/10.3390/info12100405.
Der volle Inhalt der QuellePeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou, and Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers." Sensors 23, no. 2 (2023): 900. http://dx.doi.org/10.3390/s23020900.
Der volle Inhalt der QuelleWang, Hui, Yifeng Wang, and Yuanbo Guo. "Unknown network attack detection method based on reinforcement zero-shot learning." Journal of Physics: Conference Series 2303, no. 1 (2022): 012008. http://dx.doi.org/10.1088/1742-6596/2303/1/012008.
Der volle Inhalt der QuelleAmamra, Abdelfattah, and Vincent Terrelonge. "Multiple Kernel Transfer Learning for Enhancing Network Intrusion Detection in Encrypted and Heterogeneous Network Environments." Electronics 14, no. 1 (2024): 80. https://doi.org/10.3390/electronics14010080.
Der volle Inhalt der QuelleSubbarayalu, Venkatraman, and Maria Anu Vensuslaus. "An Intrusion Detection System for Drone Swarming Utilizing Timed Probabilistic Automata." Drones 7, no. 4 (2023): 248. http://dx.doi.org/10.3390/drones7040248.
Der volle Inhalt der QuelleEmmah, Victor T., Chidiebere Ugwu, and Laeticia N. Onyejegbu. "An Enhanced Classification Model for Likelihood of Zero-Day Attack Detection and Estimation." European Journal of Electrical Engineering and Computer Science 5, no. 4 (2021): 69–75. http://dx.doi.org/10.24018/ejece.2021.5.4.350.
Der volle Inhalt der QuelleYao, Wenbin, Longcan Hu, Yingying Hou, and Xiaoyong Li. "A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT." Sensors 23, no. 8 (2023): 4141. http://dx.doi.org/10.3390/s23084141.
Der volle Inhalt der QuelleJosé, Tomás Martínez Garre, Gil Pérez Manuel, and Ruiz Martínez Antonio. "A Novel Machine Learning-Based Approach for the Detection of SSH Botnet Infection." Future Generation Computer Systems 115 (February 1, 2021): 387–96. https://doi.org/10.1016/j.future.2020.09.004.
Der volle Inhalt der QuelleMehedy, Hasan MD. "Combating Evolving Threats: A Signature-Anomaly Based Hybrid Intrusion Detection System for Smart Homes with False Positive Mitigation." International Journal for Research in Applied Science and Engineering Technology 12, no. 5 (2024): 403–11. http://dx.doi.org/10.22214/ijraset.2024.61393.
Der volle Inhalt der QuelleNeuschmied, Helmut, Martin Winter, Branka Stojanović, Katharina Hofer-Schmitz, Josip Božić, and Ulrike Kleb. "APT-Attack Detection Based on Multi-Stage Autoencoders." Applied Sciences 12, no. 13 (2022): 6816. http://dx.doi.org/10.3390/app12136816.
Der volle Inhalt der QuelleHassnain, Muhammad, Ibrahim Ahmed Qureshi, and Ammar Haider. "Detection and Identification of Novel Attacks in Phishing using AI Algorithms." International Journal of Computer Science and Mobile Computing 14, no. 3 (2025): 20–27. https://doi.org/10.47760/ijcsmc.2025.v14i03.003.
Der volle Inhalt der QuelleVenu Gopal Bitra, Ajay Kumar, Seshagiri Rao, Prakash, and Md. Shakeel Ahmed. "Comparative analysis on intrusion detection system using machine learning approach." World Journal of Advanced Research and Reviews 21, no. 3 (2024): 2555–62. http://dx.doi.org/10.30574/wjarr.2024.21.3.0983.
Der volle Inhalt der QuelleVenu, Gopal Bitra, Kumar Ajay, Rao Seshagiri, Prakash, and Shakeel Ahmed Md. "Comparative analysis on intrusion detection system using machine learning approach." World Journal of Advanced Research and Reviews 21, no. 3 (2024): 2555–62. https://doi.org/10.5281/zenodo.14182003.
Der volle Inhalt der QuelleKamal, Hesham, and Maggie Mashaly. "Advanced Hybrid Transformer-CNN Deep Learning Model for Effective Intrusion Detection Systems with Class Imbalance Mitigation Using Resampling Techniques." Future Internet 16, no. 12 (2024): 481. https://doi.org/10.3390/fi16120481.
Der volle Inhalt der QuelleMerugu, Akshay, Hrishikesh Goud Chagapuram, and Rahul Bollepalli. "Spam Email Detection Using Convolutional Neural Networks: An Empirical Study." International Journal for Research in Applied Science and Engineering Technology 11, no. 10 (2023): 981–91. http://dx.doi.org/10.22214/ijraset.2023.56143.
Der volle Inhalt der QuelleSk, Mr Shafiulilah. "AI-Driven Network Intrusion Detection System." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 1481–86. https://doi.org/10.22214/ijraset.2025.67539.
Der volle Inhalt der QuelleAgrawal, Kavita, Suresh Chittineni, P.V.G. D. Prasad Reddy, and Subhadra Kompella. "Intrusion Detection for Cyber Security: A Comparative Study of Machine Learning, Deep Learning and Transfer Learning Methods." International Journal of Microsystems and IoT 2, no. 1 (2024): 483–91. https://doi.org/10.5281/zenodo.10665195.
Der volle Inhalt der QuelleZhou, Ce, Yilun Liu, Weibin Meng, et al. "SRDC: Semantics-based Ransomware Detection and Classification with LLM-assisted Pre-training." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 27 (2025): 28566–74. https://doi.org/10.1609/aaai.v39i27.35080.
Der volle Inhalt der QuelleOdego, John Kennedy Otieno, Kennedy Odhiambo Ogada, and Dennis Mugambi Kaburu. "An Ontology-Based Approach for Zero-Day Information Security Threat Management." International Journal of Information Security and Privacy 19, no. 1 (2025): 1–21. https://doi.org/10.4018/ijisp.384606.
Der volle Inhalt der QuelleGetman, Aleksandr Igorevich, Maxim Nikolaevich Goryunov, Andrey Georgievich Matskevich, and Dmitry Aleksandrovich Rybolovlev. "A Comparison of a Machine Learning-Based Intrusion Detection System and Signature-Based Systems." Proceedings of the Institute for System Programming of the RAS 34, no. 5 (2022): 111–26. http://dx.doi.org/10.15514/ispras-2022-34(5)-7.
Der volle Inhalt der QuelleBhaya, Wesam S., and Mustafa A. Ali. "Review on Malware and Malware Detection Using Data Mining Techniques." JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 25, no. 5 (2017): 1585–601. http://dx.doi.org/10.29196/jub.v25i5.104.
Der volle Inhalt der QuelleKhraisat, Gondal, Vamplew, Kamruzzaman, and Alazab. "A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks." Electronics 8, no. 11 (2019): 1210. http://dx.doi.org/10.3390/electronics8111210.
Der volle Inhalt der QuelleAgrawal, K., S. Chittineni, P.V.G. D. Prasad Reddy, and K. Subhadra. "Intrusion Detection for CyberSecurity: A Comparative Study of Machine Learning, Deep Learning and Transfer Learning Methods." International Journal of Microsystems and IoT 2, no. 7 (2024): 1050–58. https://doi.org/10.5281/zenodo.13332556.
Der volle Inhalt der QuelleMarison, Sihol, Silvanus Silvanus, and Rudi Rusdiah. "AI-BASED ALGORITHMS FOR NETWORK SECURITY: TRENDS, PER-FORMANCE, AND CHALLENGES." JURTEKSI (Jurnal Teknologi dan Sistem Informasi) 11, no. 2 (2025): 329–36. https://doi.org/10.33330/jurteksi.v11i2.3699.
Der volle Inhalt der QuelleRahman, Rizwan Ur, and Deepak Singh Tomar. "Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set." International Journal of Digital Crime and Forensics 13, no. 6 (2021): 1–27. http://dx.doi.org/10.4018/ijdcf.20211101.oa6.
Der volle Inhalt der QuelleP. Arul, Et al. "Predicting the Attacks in IoT Devices using DP Algorithm." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 11 (2023): 164–68. http://dx.doi.org/10.17762/ijritcc.v11i11.9133.
Der volle Inhalt der QuelleDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Der volle Inhalt der QuelleOthman, Trifa S., and Saman M. Abdullah. "An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning." ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, no. 1 (2023): 126–37. http://dx.doi.org/10.14500/aro.11124.
Der volle Inhalt der QuelleLakhdhar, Yosra, Slim Rekhis, and Noureddine Boudriga. "A Context-based Defense Model for Assessing Cyber Systems' Ability To Defend Against Known And Unknown Attack Scenarios." JUCS - Journal of Universal Computer Science 25, no. (9) (2019): 1066–88. https://doi.org/10.3217/jucs-025-09-1066.
Der volle Inhalt der QuelleDange, Varsha, Soham Phadke, Tilak Solunke, Sidhesh Marne, Snehal Suryawanshi, and Om Surase. "Weighted Multiclass Intrusion Detection System." ITM Web of Conferences 57 (2023): 01009. http://dx.doi.org/10.1051/itmconf/20235701009.
Der volle Inhalt der QuelleBOBROVNIKOVA, KIRA, MARIIA KAPUSTIAN, and DMYTRO DENYSIUK. "RESEARCH OF MACHINE LEARNING BASED METHODS FOR CYBERATTACKS DETECTION IN THE INTERNET OF THINGS INFRASTRUCTURE." Computer systems and information technologies, no. 3 (April 14, 2022): 110–15. http://dx.doi.org/10.31891/csit-2021-5-15.
Der volle Inhalt der QuelleKhraisat, Ansam, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman, and Ammar Alazab. "Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine." Electronics 9, no. 1 (2020): 173. http://dx.doi.org/10.3390/electronics9010173.
Der volle Inhalt der QuelleM.R., Amal, and Venkadesh P. "Review of Cyber Attack Detection: Honeypot System." Webology 19, no. 1 (2022): 5497–514. http://dx.doi.org/10.14704/web/v19i1/web19370.
Der volle Inhalt der Quelle