Zeitschriftenartikel zum Thema „Known and Zero-Day Attacks Detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Known and Zero-Day Attacks Detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nerella Sameera, M.Siva Jyothi, K.Lakshmaji und V.S.R.Pavan Kumar. Neeli. „Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks“. Journal of Advanced Zoology 44, Nr. 4 (02.12.2023): 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Der volle Inhalt der QuelleHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne und Xavier Bellekens. „Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection“. Electronics 9, Nr. 10 (14.10.2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Der volle Inhalt der QuelleOhtani, Takahiro, Ryo Yamamoto und Satoshi Ohzahata. „IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT“. Sensors 24, Nr. 10 (18.05.2024): 3218. http://dx.doi.org/10.3390/s24103218.
Der volle Inhalt der QuelleHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut und Marianne A. Azer. „Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques“. Electronics 12, Nr. 3 (23.01.2023): 573. http://dx.doi.org/10.3390/electronics12030573.
Der volle Inhalt der QuelleAl-Rushdan, Huthifh, Mohammad Shurman und Sharhabeel Alnabelsi. „On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks“. International Arab Journal of Information Technology 17, Nr. 4A (31.07.2020): 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Der volle Inhalt der QuelleAlam, Naushad, und Muqeem Ahmed. „Zero-day Network Intrusion Detection using Machine Learning Approach“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 8s (18.08.2023): 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Der volle Inhalt der QuelleBu, Seok-Jun, und Sung-Bae Cho. „Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection“. Electronics 10, Nr. 12 (21.06.2021): 1492. http://dx.doi.org/10.3390/electronics10121492.
Der volle Inhalt der QuelleAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal und Ki-Il Kim. „Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection“. Electronics 11, Nr. 23 (28.11.2022): 3934. http://dx.doi.org/10.3390/electronics11233934.
Der volle Inhalt der QuelleRodríguez, Eva, Pol Valls, Beatriz Otero, Juan José Costa, Javier Verdú, Manuel Alejandro Pajuelo und Ramon Canal. „Transfer-Learning-Based Intrusion Detection Framework in IoT Networks“. Sensors 22, Nr. 15 (27.07.2022): 5621. http://dx.doi.org/10.3390/s22155621.
Der volle Inhalt der QuelleSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh und Paulo J. Sequeira Gonçalves. „Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS)“. Sensors 23, Nr. 12 (09.06.2023): 5459. http://dx.doi.org/10.3390/s23125459.
Der volle Inhalt der QuelleMala, V., und K. Meena. „Hybrid classification model to detect advanced intrusions using data mining techniques“. International Journal of Engineering & Technology 7, Nr. 2.4 (10.03.2018): 10. http://dx.doi.org/10.14419/ijet.v7i2.4.10031.
Der volle Inhalt der QuelleDas, Saikat, Mohammad Ashrafuzzaman, Frederick T. Sheldon und Sajjan Shiva. „Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks“. Algorithms 17, Nr. 3 (24.02.2024): 99. http://dx.doi.org/10.3390/a17030099.
Der volle Inhalt der QuelleNkongolo, Mike, Jacobus Philippus van Deventer und Sydney Mambwe Kasongo. „UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day Threats“. Information 12, Nr. 10 (30.09.2021): 405. http://dx.doi.org/10.3390/info12100405.
Der volle Inhalt der QuellePeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou und Konstantinos Demestichas. „The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers“. Sensors 23, Nr. 2 (12.01.2023): 900. http://dx.doi.org/10.3390/s23020900.
Der volle Inhalt der QuelleWang, Hui, Yifeng Wang und Yuanbo Guo. „Unknown network attack detection method based on reinforcement zero-shot learning“. Journal of Physics: Conference Series 2303, Nr. 1 (01.07.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2303/1/012008.
Der volle Inhalt der QuelleSubbarayalu, Venkatraman, und Maria Anu Vensuslaus. „An Intrusion Detection System for Drone Swarming Utilizing Timed Probabilistic Automata“. Drones 7, Nr. 4 (03.04.2023): 248. http://dx.doi.org/10.3390/drones7040248.
Der volle Inhalt der QuelleEmmah, Victor T., Chidiebere Ugwu und Laeticia N. Onyejegbu. „An Enhanced Classification Model for Likelihood of Zero-Day Attack Detection and Estimation“. European Journal of Electrical Engineering and Computer Science 5, Nr. 4 (19.08.2021): 69–75. http://dx.doi.org/10.24018/ejece.2021.5.4.350.
Der volle Inhalt der QuelleYao, Wenbin, Longcan Hu, Yingying Hou und Xiaoyong Li. „A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT“. Sensors 23, Nr. 8 (20.04.2023): 4141. http://dx.doi.org/10.3390/s23084141.
Der volle Inhalt der QuelleMehedy, Hasan MD. „Combating Evolving Threats: A Signature-Anomaly Based Hybrid Intrusion Detection System for Smart Homes with False Positive Mitigation“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 5 (31.05.2024): 403–11. http://dx.doi.org/10.22214/ijraset.2024.61393.
Der volle Inhalt der QuelleNeuschmied, Helmut, Martin Winter, Branka Stojanović, Katharina Hofer-Schmitz, Josip Božić und Ulrike Kleb. „APT-Attack Detection Based on Multi-Stage Autoencoders“. Applied Sciences 12, Nr. 13 (05.07.2022): 6816. http://dx.doi.org/10.3390/app12136816.
Der volle Inhalt der QuelleVenu Gopal Bitra, Ajay Kumar, Seshagiri Rao, Prakash und Md. Shakeel Ahmed. „Comparative analysis on intrusion detection system using machine learning approach“. World Journal of Advanced Research and Reviews 21, Nr. 3 (30.03.2024): 2555–62. http://dx.doi.org/10.30574/wjarr.2024.21.3.0983.
Der volle Inhalt der QuelleKhraisat, Gondal, Vamplew, Kamruzzaman und Alazab. „A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks“. Electronics 8, Nr. 11 (23.10.2019): 1210. http://dx.doi.org/10.3390/electronics8111210.
Der volle Inhalt der QuelleMerugu, Akshay, Hrishikesh Goud Chagapuram und Rahul Bollepalli. „Spam Email Detection Using Convolutional Neural Networks: An Empirical Study“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 10 (31.10.2023): 981–91. http://dx.doi.org/10.22214/ijraset.2023.56143.
Der volle Inhalt der QuelleBhaya, Wesam S., und Mustafa A. Ali. „Review on Malware and Malware Detection Using Data Mining Techniques“. JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 25, Nr. 5 (29.11.2017): 1585–601. http://dx.doi.org/10.29196/jub.v25i5.104.
Der volle Inhalt der QuelleGetman, Aleksandr Igorevich, Maxim Nikolaevich Goryunov, Andrey Georgievich Matskevich und Dmitry Aleksandrovich Rybolovlev. „A Comparison of a Machine Learning-Based Intrusion Detection System and Signature-Based Systems“. Proceedings of the Institute for System Programming of the RAS 34, Nr. 5 (2022): 111–26. http://dx.doi.org/10.15514/ispras-2022-34(5)-7.
Der volle Inhalt der QuelleRahman, Rizwan Ur, und Deepak Singh Tomar. „Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set“. International Journal of Digital Crime and Forensics 13, Nr. 6 (01.11.2021): 1–27. http://dx.doi.org/10.4018/ijdcf.20211101.oa6.
Der volle Inhalt der QuelleDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. „Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning“. INFORMATION TECHNOLOGY IN INDUSTRY 9, Nr. 2 (31.03.2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Der volle Inhalt der QuelleP. Arul, Et al. „Predicting the Attacks in IoT Devices using DP Algorithm“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 11 (30.11.2023): 164–68. http://dx.doi.org/10.17762/ijritcc.v11i11.9133.
Der volle Inhalt der QuelleOthman, Trifa S., und Saman M. Abdullah. „An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning“. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, Nr. 1 (22.05.2023): 126–37. http://dx.doi.org/10.14500/aro.11124.
Der volle Inhalt der QuelleDange, Varsha, Soham Phadke, Tilak Solunke, Sidhesh Marne, Snehal Suryawanshi und Om Surase. „Weighted Multiclass Intrusion Detection System“. ITM Web of Conferences 57 (2023): 01009. http://dx.doi.org/10.1051/itmconf/20235701009.
Der volle Inhalt der QuelleBOBROVNIKOVA, KIRA, MARIIA KAPUSTIAN und DMYTRO DENYSIUK. „RESEARCH OF MACHINE LEARNING BASED METHODS FOR CYBERATTACKS DETECTION IN THE INTERNET OF THINGS INFRASTRUCTURE“. Computer systems and information technologies, Nr. 3 (14.04.2022): 110–15. http://dx.doi.org/10.31891/csit-2021-5-15.
Der volle Inhalt der QuelleM.R., Amal, und Venkadesh P. „Review of Cyber Attack Detection: Honeypot System“. Webology 19, Nr. 1 (20.01.2022): 5497–514. http://dx.doi.org/10.14704/web/v19i1/web19370.
Der volle Inhalt der QuelleKhraisat, Ansam, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman und Ammar Alazab. „Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine“. Electronics 9, Nr. 1 (17.01.2020): 173. http://dx.doi.org/10.3390/electronics9010173.
Der volle Inhalt der QuelleСычугов, А. А., und М. М. Греков. „Application of generative adversarial networks in anomaly detection systems“. МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 9, Nr. 1(32) (31.01.2021): 3–4. http://dx.doi.org/10.26102/2310-6018/2021.32.1.003.
Der volle Inhalt der QuelleAl-Sabbagh, Kais Said, Hamid M. Ali und Elaf Sabah Abbas. „Development an Anomaly Network Intrusion Detection System Using Neural Network“. Journal of Engineering 18, Nr. 12 (01.12.2012): 1325–34. http://dx.doi.org/10.31026/j.eng.2012.12.03.
Der volle Inhalt der QuelleIliyasu, Auwal Sani, Usman Alhaji Abdurrahman und Lirong Zheng. „Few-Shot Network Intrusion Detection Using Discriminative Representation Learning with Supervised Autoencoder“. Applied Sciences 12, Nr. 5 (24.02.2022): 2351. http://dx.doi.org/10.3390/app12052351.
Der volle Inhalt der QuelleArshi, M., MD Nasreen und Karanam Madhavi. „A Survey of DDOS Attacks Using Machine Learning Techniques“. E3S Web of Conferences 184 (2020): 01052. http://dx.doi.org/10.1051/e3sconf/202018401052.
Der volle Inhalt der QuelleKumar Lingamallu, Raghu, Pradeep Balasubramani, S. Arvind, P. Srinivasa Rao, Veeraswamy Ammisetty, Koppuravuri Gurnadha Gupta, M. N. Sharath, Y. J. Nagendra Kumar und Vaibhav Mittal. „Securing IoT networks: A fog-based framework for malicious device detection“. MATEC Web of Conferences 392 (2024): 01103. http://dx.doi.org/10.1051/matecconf/202439201103.
Der volle Inhalt der QuelleKikelomo, Akinwole Agnes, Yekini Nureni Asafe und Ogundele Israel Oludayo. „Malware Detection System Using Mathematics of Random Forest Classifier“. International Journal of Advances in Scientific Research and Engineering 09, Nr. 03 (2023): 45–53. http://dx.doi.org/10.31695/ijasre.2023.9.3.6.
Der volle Inhalt der QuelleZoppi, Tommaso, Mohamad Gharib, Muhammad Atif und Andrea Bondavalli. „Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems“. ACM Transactions on Cyber-Physical Systems 5, Nr. 4 (31.10.2021): 1–27. http://dx.doi.org/10.1145/3467470.
Der volle Inhalt der QuelleLi, Shiyun, und Omar Dib. „Enhancing Online Security: A Novel Machine Learning Framework for Robust Detection of Known and Unknown Malicious URLs“. Journal of Theoretical and Applied Electronic Commerce Research 19, Nr. 4 (26.10.2024): 2919–60. http://dx.doi.org/10.3390/jtaer19040141.
Der volle Inhalt der QuelleSamantray, Om Prakash, und Satya Narayan Tripathy. „An Opcode-Based Malware Detection Model Using Supervised Learning Algorithms“. International Journal of Information Security and Privacy 15, Nr. 4 (Oktober 2021): 18–30. http://dx.doi.org/10.4018/ijisp.2021100102.
Der volle Inhalt der QuelleSerinelli, Benedetto Marco, Anastasija Collen und Niels Alexander Nijdam. „On the analysis of open source datasets: validating IDS implementation for well-known and zero day attack detection“. Procedia Computer Science 191 (2021): 192–99. http://dx.doi.org/10.1016/j.procs.2021.07.024.
Der volle Inhalt der QuelleRangaraju, Sakthiswaran. „AI SENTRY: REINVENTING CYBERSECURITY THROUGH INTELLIGENT THREAT DETECTION“. EPH - International Journal of Science And Engineering 9, Nr. 3 (01.12.2023): 30–35. http://dx.doi.org/10.53555/ephijse.v9i3.211.
Der volle Inhalt der QuelleAlsulami, Basmah, Abdulmohsen Almalawi und Adil Fahad. „Toward an Efficient Automatic Self-Augmentation Labeling Tool for Intrusion Detection Based on a Semi-Supervised Approach“. Applied Sciences 12, Nr. 14 (17.07.2022): 7189. http://dx.doi.org/10.3390/app12147189.
Der volle Inhalt der QuelleH., Manjunath, und Saravana Kumar. „Network Intrusion Detection System using Convolution Recurrent Neural Networks and NSL-KDD Dataset“. Fusion: Practice and Applications 13, Nr. 1 (2023): 117–25. http://dx.doi.org/10.54216/fpa.130109.
Der volle Inhalt der QuelleBalaji K. M. und Subbulakshmi T. „Malware Analysis Using Classification and Clustering Algorithms“. International Journal of e-Collaboration 18, Nr. 1 (Januar 2022): 1–26. http://dx.doi.org/10.4018/ijec.290290.
Der volle Inhalt der QuelleDung, Nguyễn Thị, Nguyễn Văn Quân und Nguyễn Việt Hùng. „Ứng dụng mô hình học sâu trong phát hiện tấn công trinh sát mạng“. Journal of Science and Technology on Information security 2, Nr. 16 (13.02.2023): 60–72. http://dx.doi.org/10.54654/isj.v1i16.922.
Der volle Inhalt der QuelleU., Kumaran, Thangam S., T. V. Nidhin Prabhakar, Jana Selvaganesan und Vishwas H.N. „Adversarial Defense: A GAN-IF Based Cyber-security Model for Intrusion Detection in Software Piracy“. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 14, Nr. 4 (23.12.2023): 96–114. http://dx.doi.org/10.58346/jowua.2023.i4.008.
Der volle Inhalt der QuelleJagan, Shanmugam, Ashish Ashish, Miroslav Mahdal, Kenneth Ruth Isabels, Jyoti Dhanke, Parita Jain und Muniyandy Elangovan. „A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms“. Mathematics 11, Nr. 13 (24.06.2023): 2840. http://dx.doi.org/10.3390/math11132840.
Der volle Inhalt der Quelle