Zeitschriftenartikel zum Thema „Knockin mouse model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Knockin mouse model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Savva, Isavella, Charalampos Stefanou, Myrtani Pieri, Dorin B. Borza, Kostas Stylianou, George Lapathitis, Christos Karaiskos, Gregoris Papagregoriou und Constantinos Deltas. „MP036A NOVEL KNOCKIN MOUSE MODEL FOR ALPORT SYNDROME“. Nephrology Dialysis Transplantation 31, suppl_1 (Mai 2016): i354. http://dx.doi.org/10.1093/ndt/gfw182.06.
Der volle Inhalt der QuelleLuo, Yichen, Liang Du, Zhimeng Yao, Fan Liu, Kai Li, Feifei Li, Jianlin Zhu et al. „Generation and Application of Inducible Chimeric RNA ASTN2-PAPPAas Knockin Mouse Model“. Cells 11, Nr. 2 (14.01.2022): 277. http://dx.doi.org/10.3390/cells11020277.
Der volle Inhalt der Quellede Winter, J., M. Yuen, R. Van der Pijl, F. Li, S. Shengyi, S. Conijn, M. Van de Locht et al. „P.162Novel Kbtbd13R408C-knockin mouse model phenocopies NEM6 myopathy“. Neuromuscular Disorders 29 (Oktober 2019): S95. http://dx.doi.org/10.1016/j.nmd.2019.06.217.
Der volle Inhalt der QuelleWegener, Eike, Cornelia Brendel, Andre Fischer, Swen Hülsmann, Jutta Gärtner und Peter Huppke. „Characterization of the MeCP2R168X Knockin Mouse Model for Rett Syndrome“. PLoS ONE 9, Nr. 12 (26.12.2014): e115444. http://dx.doi.org/10.1371/journal.pone.0115444.
Der volle Inhalt der QuelleRose, Samuel J., Lisa H. Kriener, Ann K. Heinzer, Xueliang Fan, Robert S. Raike, Arn M. J. M. van den Maagdenberg und Ellen J. Hess. „The first knockin mouse model of episodic ataxia type 2“. Experimental Neurology 261 (November 2014): 553–62. http://dx.doi.org/10.1016/j.expneurol.2014.08.001.
Der volle Inhalt der QuelleSundberg, J. P., C. H. Pratt, K. A. Silva, V. E. Kennedy, L. Goodwin, W. Qin und A. Bowcock. „394 Card14 knockin mouse model of psoriasis and psoriatic arthritis“. Journal of Investigative Dermatology 136, Nr. 5 (Mai 2016): S70. http://dx.doi.org/10.1016/j.jid.2016.02.428.
Der volle Inhalt der QuelleBaelde, R., A. Fortes Monteiro, E. Nollet, R. Galli, J. Strom, J. van der Velden, C. Ottenheijm und J. de Winter. „P400 Kbtbd13R408C-knockin mouse model elucidates mitochondrial pathomechanism in NEM6“. Neuromuscular Disorders 33 (Oktober 2023): S123. http://dx.doi.org/10.1016/j.nmd.2023.07.231.
Der volle Inhalt der QuelleYuan, Weiming, Xiangshu Wen, Ping Rao, Seil Kim und Peter Cresswell. „Characterization of a human CD1d-knockin mouse (106.44)“. Journal of Immunology 188, Nr. 1_Supplement (01.05.2012): 106.44. http://dx.doi.org/10.4049/jimmunol.188.supp.106.44.
Der volle Inhalt der QuelleGuo, Qinxi, Hui Zheng und Nicholas John Justice. „Central CRF system perturbation in an Alzheimer's disease knockin mouse model“. Neurobiology of Aging 33, Nr. 11 (November 2012): 2678–91. http://dx.doi.org/10.1016/j.neurobiolaging.2012.01.002.
Der volle Inhalt der QuelleNomura, Naohiro, Masato Tajima, Noriko Sugawara, Tetsuji Morimoto, Yoshiaki Kondo, Mayuko Ohno, Keiko Uchida et al. „Generation and analyses of R8L barttin knockin mouse“. American Journal of Physiology-Renal Physiology 301, Nr. 2 (August 2011): F297—F307. http://dx.doi.org/10.1152/ajprenal.00604.2010.
Der volle Inhalt der QuelleHammersen, Johanna, Jin Hou, Stephanie Wünsche, Sven Brenner, Thomas Winkler und Holm Schneider. „A new mouse model of junctional epidermolysis bullosa: the LAMB3 628G>A knockin mouse“. Molecular and Cellular Pediatrics 1, Suppl 1 (2014): A12. http://dx.doi.org/10.1186/2194-7791-1-s1-a12.
Der volle Inhalt der QuelleHammersen, Johanna, Jin Hou, Stephanie Wünsche, Sven Brenner, Thomas Winkler und Holm Schneider. „A New Mouse Model of Junctional Epidermolysis Bullosa: The LAMB3 628G>A Knockin Mouse“. Journal of Investigative Dermatology 135, Nr. 3 (März 2015): 921–24. http://dx.doi.org/10.1038/jid.2014.466.
Der volle Inhalt der QuelleYan, Dongqing, Robert E. Hutchison und Golam Mohi. „Critical requirement for Stat5 in a mouse model of polycythemia vera“. Blood 119, Nr. 15 (12.04.2012): 3539–49. http://dx.doi.org/10.1182/blood-2011-03-345215.
Der volle Inhalt der QuelleEllegood, Jacob, Jason P. Lerch und R. Mark Henkelman. „Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism“. Autism Research 4, Nr. 5 (31.08.2011): 368–76. http://dx.doi.org/10.1002/aur.215.
Der volle Inhalt der QuelleGilley, Jonathan, Robert Adalbert und Michael P. Coleman. „Modelling early responses to neurodegenerative mutations in mice“. Biochemical Society Transactions 39, Nr. 4 (20.07.2011): 933–38. http://dx.doi.org/10.1042/bst0390933.
Der volle Inhalt der QuelleOhno, Shinji, Nobuyuki Ono, Fumio Seki, Makoto Takeda, Shinobu Kura, Teruhisa Tsuzuki und Yusuke Yanagi. „Measles Virus Infection of SLAM (CD150) Knockin Mice Reproduces Tropism and Immunosuppression in Human Infection“. Journal of Virology 81, Nr. 4 (29.11.2006): 1650–59. http://dx.doi.org/10.1128/jvi.02134-06.
Der volle Inhalt der Quellevan den Maagdenberg, Arn M. J. M., Daniela Pietrobon, Tommaso Pizzorusso, Simon Kaja, Ludo A. M. Broos, Tiziana Cesetti, Rob C. G. van de Ven et al. „A Cacna1a Knockin Migraine Mouse Model with Increased Susceptibility to Cortical Spreading Depression“. Neuron 41, Nr. 5 (März 2004): 701–10. http://dx.doi.org/10.1016/s0896-6273(04)00085-6.
Der volle Inhalt der QuelleQin, Mei, Tianjian Huang, Zhonghua Liu, Michael Kader, Thomas Burlin, Zengyan Xia, Zachary Zeidler, Renate K. Hukema und Carolyn B. Smith. „Cerebral Protein Synthesis in a Knockin Mouse Model of the Fragile X Premutation“. ASN Neuro 6, Nr. 5 (19.09.2014): 175909141455195. http://dx.doi.org/10.1177/1759091414551957.
Der volle Inhalt der QuelleWu, Fenfen, Wentao Mi, Dennis K. Burns, Yu Fu, Hillery F. Gray, Arie F. Struyk und Stephen C. Cannon. „A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis“. Journal of Clinical Investigation 121, Nr. 10 (03.10.2011): 4082–94. http://dx.doi.org/10.1172/jci57398.
Der volle Inhalt der QuelleTurnes, Bruna, Leo Mejia, Carl Nist-Lund, Nathaniel Hodgson, Nick Andrews, Alan Kopin und Michela Fagiolini. „NEWLY DEVELOPED TECPR2 KNOCKIN MOUSE MODEL FOR THE STUDY OF TECPR2-RELATED DISORDER“. IBRO Neuroscience Reports 15 (Oktober 2023): S145. http://dx.doi.org/10.1016/j.ibneur.2023.08.189.
Der volle Inhalt der QuelleNirala, Bikesh Kumar, Lyazat Kurenbekova, Tajhal Patel, Ryan Lane Shuck, Atreyi Dasgupta, Nino Carlo Rainusso und Jason T. Yustein. „Abstract 6713: Myc-regulated miR17, 20a modulate RANK expression in osteosarcoma“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 6713. http://dx.doi.org/10.1158/1538-7445.am2023-6713.
Der volle Inhalt der QuelleLiu, Yuning, Hong Xing, Bradley J. Wilkes, Fumiaki Yokoi, Huanxin Chen, David E. Vaillancourt und Yuqing Li. „The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia“. Brain Research Bulletin 165 (Dezember 2020): 14–22. http://dx.doi.org/10.1016/j.brainresbull.2020.09.011.
Der volle Inhalt der QuelleFan, Changfa, Xi Wu, Qiang Liu, Qianqian Li, Susu Liu, Jianjun Lu, Yanwei Yang et al. „A Human DPP4-Knockin Mouse’s Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV“. Viruses 10, Nr. 9 (23.08.2018): 448. http://dx.doi.org/10.3390/v10090448.
Der volle Inhalt der QuelleHe, Daniel. „Abstract 5092: Non-IL-2 blocking Treg-depleting anti-human CD25 mAb primes potent anti-tumor immunity and synergizes anti-tumor effects of anti-PD-1 in a novel hIL-2RA knockin model“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 5092. http://dx.doi.org/10.1158/1538-7445.am2023-5092.
Der volle Inhalt der QuelleRongvaux, Anthony, Tim Willinger, Hitoshi Takizawa, Chozhavendan Rathinam, Elizabeth Eynon, Sean Stevens, Markus Manz und Richard Flavell. „Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo (153.5)“. Journal of Immunology 186, Nr. 1_Supplement (01.04.2011): 153.5. http://dx.doi.org/10.4049/jimmunol.186.supp.153.5.
Der volle Inhalt der QuelleSeo, Kyowon, Eun Kyoung Kim, Jaeil Choi, Dae-Seong Kim und Jin-Hong Shin. „Functional recovery of a novel knockin mouse model of dysferlinopathy by readthrough of nonsense mutation“. Molecular Therapy - Methods & Clinical Development 21 (Juni 2021): 702–9. http://dx.doi.org/10.1016/j.omtm.2021.04.015.
Der volle Inhalt der QuelleBonnet, Marie, Fang Huang, Touati Benoukraf, Olivier Cabaud, Christophe Verthuy, Anaelle Boucher, Sébastien Jaeger, Pierre Ferrier und Salvatore Spicuglia. „Duality of Enhancer Functioning Mode Revealed in a Reduced TCRβ Gene Enhancer Knockin Mouse Model“. Journal of Immunology 183, Nr. 12 (18.11.2009): 7939–48. http://dx.doi.org/10.4049/jimmunol.0902179.
Der volle Inhalt der QuelleMohamed, Rasha M. S. M., Sachio Morimoto, Islam A. A. E. H. Ibrahim, Dong-Yun Zhan, Cheng-Kun Du, Masaki Arioka, Tatsuya Yoshihara, Fumi Takahashi-Yanaga und Toshiyuki Sasaguri. „GSK-3β heterozygous knockout is cardioprotective in a knockin mouse model of familial dilated cardiomyopathy“. American Journal of Physiology-Heart and Circulatory Physiology 310, Nr. 11 (01.06.2016): H1808—H1815. http://dx.doi.org/10.1152/ajpheart.00771.2015.
Der volle Inhalt der QuelleYang, Sung-Sen, Tetsuji Morimoto, Tatemitsu Rai, Motoko Chiga, Eisei Sohara, Mayuko Ohno, Keiko Uchida et al. „Molecular Pathogenesis of Pseudohypoaldosteronism Type II: Generation and Analysis of a Wnk4D561A/+ Knockin Mouse Model“. Cell Metabolism 5, Nr. 5 (Mai 2007): 331–44. http://dx.doi.org/10.1016/j.cmet.2007.03.009.
Der volle Inhalt der QuelleBaelde, R., V. Janssen, A. Fortes Monteiro, R. Galli, M. Methawasin, H. Granzier, D. Kuster, J. van der Velden, C. Ottenheijm und J. de Winter. „P407 Kbtbd13R408C-knockin mouse model reveals impaired relaxation kinetics as novel pathomechanism for NEM6 cardiomyopathy“. Neuromuscular Disorders 33 (Oktober 2023): S125. http://dx.doi.org/10.1016/j.nmd.2023.07.238.
Der volle Inhalt der QuelleValenzuela, Alicia, Karen Fancher, Cat Lutz und Stephen Rockwood. „Mouse Models for Immunology Research available from The Jackson Laboratory Repository“. Journal of Immunology 198, Nr. 1_Supplement (01.05.2017): 121.17. http://dx.doi.org/10.4049/jimmunol.198.supp.121.17.
Der volle Inhalt der QuelleZhao, Ling, Lemlem Alemu, Jun Cheng, Tao Zhen, Alan D. Friedman und Pu Paul Liu. „Functional Dissection of the C Terminus of CBFβ-SMMHC Indicates a Critical Role of the Multimerization Domain during Hematopoiesis and Leukemogenesis“. Blood 124, Nr. 21 (06.12.2014): 2218. http://dx.doi.org/10.1182/blood.v124.21.2218.2218.
Der volle Inhalt der QuelleShimura, Daisuke, Yoichiro Kusakari, Tetsuo Sasano, Yasuhiro Nakashima, Gaku Nakai, Qibin Jiao, Meihua Jin et al. „Heterozygous deletion of sarcolipin maintains normal cardiac function“. American Journal of Physiology-Heart and Circulatory Physiology 310, Nr. 1 (01.01.2016): H92—H103. http://dx.doi.org/10.1152/ajpheart.00411.2015.
Der volle Inhalt der QuellePrice, Brandee A., Ivette M. Sandoval, Fung Chan, David L. Simons, Samuel M. Wu, Theodore G. Wensel und John H. Wilson. „Mislocalization and Degradation of Human P23H-Rhodopsin-GFP in a Knockin Mouse Model of Retinitis Pigmentosa“. Investigative Opthalmology & Visual Science 52, Nr. 13 (24.12.2011): 9728. http://dx.doi.org/10.1167/iovs.11-8654.
Der volle Inhalt der QuelleLudwig, Michael R., Kyoko Kojima, Gregory J. Bowersock, Dongquan Chen, Nirag C. Jhala, Donald J. Buchsbaum, William E. Grizzle, Christopher A. Klug und James A. Mobley. „Surveying the serologic proteome in a tissue-specific kras(G12D) knockin mouse model of pancreatic cancer“. PROTEOMICS 16, Nr. 3 (18.01.2016): 516–31. http://dx.doi.org/10.1002/pmic.201500133.
Der volle Inhalt der QuelleLi, Kun, Christine L. Wohlford-Lenane, Rudragouda Channappanavar, Jung-Eun Park, James T. Earnest, Thomas B. Bair, Amber M. Bates et al. „Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice“. Proceedings of the National Academy of Sciences 114, Nr. 15 (27.03.2017): E3119—E3128. http://dx.doi.org/10.1073/pnas.1619109114.
Der volle Inhalt der QuelleSantillo, Alessandra, Sara Falvo, Massimo Venditti, Anna Di Maio, Gabriella Chieffi Baccari, Francesco Errico, Alessandro Usiello, Sergio Minucci und Maria Maddalena Di Fiore. „D-Aspartate Depletion Perturbs Steroidogenesis and Spermatogenesis in Mice“. Biomolecules 13, Nr. 4 (30.03.2023): 621. http://dx.doi.org/10.3390/biom13040621.
Der volle Inhalt der QuelleRongvaux, Anthony, Tim Willinger, Hitoshi Takizawa, Chozhavendan Rathinam, Elizabeth E. Eynon, Sean Stevens, Markus G. Manz und Richard A. Flavell. „Human Thrombopoietin Knockin Mice Efficiently Support Human Hematopoiesis In Vivo“. Blood 116, Nr. 21 (19.11.2010): 403. http://dx.doi.org/10.1182/blood.v116.21.403.403.
Der volle Inhalt der QuelleDuan, Wenming, Manal Y. Gabril, Madeleine Moussa, Franky L. Chan, Hideki Sakai, Guohua Fong und Jim W. Xuan. „Knockin of SV40 Tag oncogene in a mouse adenocarcinoma of the prostate model demonstrates advantageous features over the transgenic model“. Oncogene 24, Nr. 9 (17.01.2005): 1510–24. http://dx.doi.org/10.1038/sj.onc.1208229.
Der volle Inhalt der Quellevan Oort, Ralph J., Jonathan L. Respress, Na Li, Corey Reynolds, Angela C. De Almeida, Darlene G. Skapura, Leon J. De Windt und Xander H. T. Wehrens. „Accelerated Development of Pressure Overload–Induced Cardiac Hypertrophy and Dysfunction in an RyR2-R176Q Knockin Mouse Model“. Hypertension 55, Nr. 4 (April 2010): 932–38. http://dx.doi.org/10.1161/hypertensionaha.109.146449.
Der volle Inhalt der QuelleZhao, Baobing, Yang Mei, Ronen Sumagin, Jing Yang, Chelsea Thorsheim, Liang Zhao, Timothy J. Stalker et al. „Pleckstrin-2 Plays an Essential Role in the Pathogenesis of JAK2V617F-Induced Myeloproliferative Neoplasms“. Blood 128, Nr. 22 (02.12.2016): 798. http://dx.doi.org/10.1182/blood.v128.22.798.798.
Der volle Inhalt der QuelleKim, Caroline S., Vasily V. Vasko, Yasuhito Kato, Michael Kruhlak, Motoyasu Saji, Sheue-Yann Cheng und Matthew D. Ringel. „AKT Activation Promotes Metastasis in a Mouse Model of Follicular Thyroid Carcinoma“. Endocrinology 146, Nr. 10 (01.10.2005): 4456–63. http://dx.doi.org/10.1210/en.2005-0172.
Der volle Inhalt der Quellemora, conchi, Ainhoa Garcia, Nuria Marzo, Jordi Altirriba, Ramon Gomis, Javier Martín und Sagrario Ortega. „Role of Cdk4 in immunological tolerance and in pancreatic beta cell mass homeostasis in T1D (99.14)“. Journal of Immunology 182, Nr. 1_Supplement (01.04.2009): 99.14. http://dx.doi.org/10.4049/jimmunol.182.supp.99.14.
Der volle Inhalt der QuelleZhao, Xiaofeng, Xu Peng, Shaogang Sun, Ann Y. J. Park und Jun-Lin Guan. „Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development“. Journal of Cell Biology 189, Nr. 6 (07.06.2010): 955–65. http://dx.doi.org/10.1083/jcb.200912094.
Der volle Inhalt der QuelleDatta, Nabanita S., Tareq A. Samra und Abdul B. Abou-Samra. „Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice“. American Journal of Physiology-Endocrinology and Metabolism 302, Nr. 10 (15.05.2012): E1183—E1188. http://dx.doi.org/10.1152/ajpendo.00380.2011.
Der volle Inhalt der QuelleVolta, Mattia, und Heather Melrose. „LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis“. Biochemical Society Transactions 45, Nr. 1 (08.02.2017): 113–22. http://dx.doi.org/10.1042/bst20160238.
Der volle Inhalt der QuelleUnno, T., M. Wakamori, M. Koike, Y. Uchiyama, K. Ishikawa, H. Kubota, T. Yoshida et al. „Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6“. Proceedings of the National Academy of Sciences 109, Nr. 43 (10.10.2012): 17693–98. http://dx.doi.org/10.1073/pnas.1212786109.
Der volle Inhalt der QuelleZhao, L., H. Alkadi, E. M. Kwon, T. Zhen, J. Lichtenberg, L. Alemu, J. Cheng, A. D. Friedman und P. P. Liu. „The C-terminal multimerization domain is essential for leukemia development by CBFβ-SMMHC in a mouse knockin model“. Leukemia 31, Nr. 12 (18.08.2017): 2841–44. http://dx.doi.org/10.1038/leu.2017.262.
Der volle Inhalt der QuelleDeng, Yun-Ping, und Anton Reiner. „Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input“. Journal of Comparative Neurology 524, Nr. 17 (06.06.2016): 3518–29. http://dx.doi.org/10.1002/cne.24013.
Der volle Inhalt der QuelleCharbonneau, Noe L., Elise C. Manalo, Sara F. Tufa, Eric J. Carlson, Valerie M. Carlberg, Douglas R. Keene und Lynn Y. Sakai. „Fibrillin‐1 in the Vasculature: In Vivo Accumulation of eGFP‐Tagged Fibrillin‐1 in a Knockin Mouse Model“. Anatomical Record 303, Nr. 6 (13.07.2019): 1590–603. http://dx.doi.org/10.1002/ar.24217.
Der volle Inhalt der Quelle