Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Knockin mouse model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Knockin mouse model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Knockin mouse model"
Savva, Isavella, Charalampos Stefanou, Myrtani Pieri, Dorin B. Borza, Kostas Stylianou, George Lapathitis, Christos Karaiskos, Gregoris Papagregoriou und Constantinos Deltas. „MP036A NOVEL KNOCKIN MOUSE MODEL FOR ALPORT SYNDROME“. Nephrology Dialysis Transplantation 31, suppl_1 (Mai 2016): i354. http://dx.doi.org/10.1093/ndt/gfw182.06.
Der volle Inhalt der QuelleLuo, Yichen, Liang Du, Zhimeng Yao, Fan Liu, Kai Li, Feifei Li, Jianlin Zhu et al. „Generation and Application of Inducible Chimeric RNA ASTN2-PAPPAas Knockin Mouse Model“. Cells 11, Nr. 2 (14.01.2022): 277. http://dx.doi.org/10.3390/cells11020277.
Der volle Inhalt der Quellede Winter, J., M. Yuen, R. Van der Pijl, F. Li, S. Shengyi, S. Conijn, M. Van de Locht et al. „P.162Novel Kbtbd13R408C-knockin mouse model phenocopies NEM6 myopathy“. Neuromuscular Disorders 29 (Oktober 2019): S95. http://dx.doi.org/10.1016/j.nmd.2019.06.217.
Der volle Inhalt der QuelleWegener, Eike, Cornelia Brendel, Andre Fischer, Swen Hülsmann, Jutta Gärtner und Peter Huppke. „Characterization of the MeCP2R168X Knockin Mouse Model for Rett Syndrome“. PLoS ONE 9, Nr. 12 (26.12.2014): e115444. http://dx.doi.org/10.1371/journal.pone.0115444.
Der volle Inhalt der QuelleRose, Samuel J., Lisa H. Kriener, Ann K. Heinzer, Xueliang Fan, Robert S. Raike, Arn M. J. M. van den Maagdenberg und Ellen J. Hess. „The first knockin mouse model of episodic ataxia type 2“. Experimental Neurology 261 (November 2014): 553–62. http://dx.doi.org/10.1016/j.expneurol.2014.08.001.
Der volle Inhalt der QuelleSundberg, J. P., C. H. Pratt, K. A. Silva, V. E. Kennedy, L. Goodwin, W. Qin und A. Bowcock. „394 Card14 knockin mouse model of psoriasis and psoriatic arthritis“. Journal of Investigative Dermatology 136, Nr. 5 (Mai 2016): S70. http://dx.doi.org/10.1016/j.jid.2016.02.428.
Der volle Inhalt der QuelleBaelde, R., A. Fortes Monteiro, E. Nollet, R. Galli, J. Strom, J. van der Velden, C. Ottenheijm und J. de Winter. „P400 Kbtbd13R408C-knockin mouse model elucidates mitochondrial pathomechanism in NEM6“. Neuromuscular Disorders 33 (Oktober 2023): S123. http://dx.doi.org/10.1016/j.nmd.2023.07.231.
Der volle Inhalt der QuelleYuan, Weiming, Xiangshu Wen, Ping Rao, Seil Kim und Peter Cresswell. „Characterization of a human CD1d-knockin mouse (106.44)“. Journal of Immunology 188, Nr. 1_Supplement (01.05.2012): 106.44. http://dx.doi.org/10.4049/jimmunol.188.supp.106.44.
Der volle Inhalt der QuelleGuo, Qinxi, Hui Zheng und Nicholas John Justice. „Central CRF system perturbation in an Alzheimer's disease knockin mouse model“. Neurobiology of Aging 33, Nr. 11 (November 2012): 2678–91. http://dx.doi.org/10.1016/j.neurobiolaging.2012.01.002.
Der volle Inhalt der QuelleNomura, Naohiro, Masato Tajima, Noriko Sugawara, Tetsuji Morimoto, Yoshiaki Kondo, Mayuko Ohno, Keiko Uchida et al. „Generation and analyses of R8L barttin knockin mouse“. American Journal of Physiology-Renal Physiology 301, Nr. 2 (August 2011): F297—F307. http://dx.doi.org/10.1152/ajprenal.00604.2010.
Der volle Inhalt der QuelleDissertationen zum Thema "Knockin mouse model"
Liu, Huifang, und 刘慧芳. „Creation and characterization of a LRRK2 knockin mouse model to elucidate the pathogenesis of Parkinson's disease“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46090903.
Der volle Inhalt der QuelleManett, Taylor. „Investigating the pathogenicity of an autism-related CNTNAP2 missense variant in a novel mouse model“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS721.pdf.
Der volle Inhalt der QuelleAutism spectrum disorders (ASD) are neurodevelopmental disorders, defined by deficits in social interaction and restricted or repetitive behavior. ASD show high heritability, shaped by rare monogenic mutations, as well as variations in numerous susceptibility genes. Intriguingly, CNTNAP2, encoding the protein Caspr2, is considered to be one of the major ASD-risk genes, with a large number of heterozygous missense variants identified in patients. Cntnap2 knockout mice display ASD-related behavioral deficits supporting human genetic data. However, the clinical significance of the heterozygous variants has not yet been demonstrated and is still debated. The PhD project aimed to unravel this question by evaluating the pathogenicity of an inherited heterozygous missense CNTNAP2 variant identified in a French ASD patient, I236S, which was predicted to be disease-causing and may be representative of a large class of CNTNAP2 variants. We generated a novel knockin mouse model, the KI-I236S mice, and conducted a study comparing wild-type and KI-I236S heterozygous (HET) mice. Caspr2 is a neuronal cell-adhesion transmembrane glycoprotein originally identified in the juxtaparanodal regions of the nodes of Ranvier in mature myelinated neurons. Recently, studying Cntnap2 knockout mice the lab showed that Caspr2 also acts as a major regulator of axon development and myelination. In the brain, Caspr2 controls axon diameter at early postnatal developmental stages, cortical neuron intrinsic excitability at the onset of myelination, and axon diameter and myelin thickness at adulthood. Caspr2 also modulates axon diameter, myelin thickness and node of Ranvier morphology in peripheral nerves. We thus assessed the impact of the variant I235S on axon development, myelination, and node of Ranvier organization in both the central and peripheral nervous system, as well as thoroughly characterizing the behavior of HET KI-I236S mice, using a battery of tests that may indicate cognitive, motor, and sensorimotor deficits. Interestingly, KI-I236S HET mice display sex-dependent cognitive and somatosensory behavioral deficits as compared to wild-type mice (social interaction slightly decreased in females; heat sensitivity and muscular strength slightly decreased in males). They also show sex-dependent alterations in myelinated axons and unmyelinated sensory C-fibers of the peripheral nervous system. Brain analyses do not show major myelination defects in adult mutant mice, but suggest that the variant could perturb the functions of Caspr2 at the onset of myelination, leading likely to an acceleration of the myelination processes at early stages. Thus, our results indicate that CNTNAP2 heterozygous missense variants such as I236S can affect Caspr2 function in a sex-dependent manner in vivo and suggest that the CNTNAP2 variants of the same class could indeed be pathogenic and contribute to the development of ASD patients, and/or contribute to inter-individual variability in physiological conditions
Sarowar, Tasnuva [Verfasser]. „Characterization of RICH2 knock-out mouse model / Tasnuva Sarowar“. Ulm : Universität Ulm, 2017. http://d-nb.info/1136370226/34.
Der volle Inhalt der QuelleNaidu, Shan Krishnan. „PATHOLOGY OF THREE TRANSGENIC MOUSE LINES WITH UNIQUE PTEN MUTANT ALLELES“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1282941122.
Der volle Inhalt der QuelleALBINI, MARTINA. „Functional interaction between BDNF and Kidins220: a study in primary mouse astrocytes and in an adult conditional knock-out mouse model“. Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1077504.
Der volle Inhalt der QuelleSaka, Asantha. „Investigating the toxic fragment hypothesis of Huntingdon disease pathogenesis using knock-in mouse models“. Thesis, University of Glasgow, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443414.
Der volle Inhalt der QuelleNgai, Ying Fai Tiffany. „The low-density lipoprotein receptor knock-out mouse : a model for the study of energy balance“. Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/23477.
Der volle Inhalt der QuellePietra, Gianluca. „Spontaneous and stimulus-evoked spiking activities in olfactory sensory neurons from Kir2.1 knock-in and TMEM16B knock-out mouse models“. Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4895.
Der volle Inhalt der QuelleSilva, Lopes Katharina da [Verfasser]. „Novel insights into Titin’s mobility and function derived from a knock-in mouse model / Katharina da Silva Lopes“. Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1026356598/34.
Der volle Inhalt der QuelleSierig, Ralph [Verfasser], Christoph [Gutachter] Englert und Falk [Gutachter] Weih. „Analysis of Wt1 function using a conditional knock-out mouse model / Ralph Sierig ; Gutachter: Christoph Englert, Falk Weih“. Jena : Friedrich-Schiller-Universität Jena, 2010. http://d-nb.info/1177668505/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Knockin mouse model"
Huang, Weihua, Wenhao Xu und Ming D. Li. „Mouse Models: Knockouts/Knockins“. In Addiction Medicine, 181–99. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0338-9_9.
Der volle Inhalt der QuelleBertoni, Arinna, Ignazia Prigione, Sabrina Chiesa, Isabella Ceccherini, Marco Gattorno und Anna Rubartelli. „A Knock-In Mouse Model of Cryopyrin-Associated Periodic Syndromes“. In Methods in Molecular Biology, 281–97. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3350-2_19.
Der volle Inhalt der QuelleRumney, Robin M. H., und Dariusz C. Górecki. „Knockout and Knock-in Mouse Models to Study Purinergic Signaling“. In Methods in Molecular Biology, 17–43. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9717-6_2.
Der volle Inhalt der QuelleGoitre, Luca, Claudia Fornelli, Alessia Zotta, Andrea Perrelli und Saverio Francesco Retta. „Production of KRIT1-knockout and KRIT1-knockin Mouse Embryonic Fibroblasts as Cellular Models of CCM Disease“. In Methods in Molecular Biology, 151–67. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0640-7_12.
Der volle Inhalt der QuelleLarsen, Erik Hviid, und Jens Nørkær Sørensen. „Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model“. In Reviews of Physiology, Biochemistry and Pharmacology, 101–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/112_2019_16.
Der volle Inhalt der QuelleGu, Bin, Marina Gertsenstein und Eszter Posfai. „Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos“. In Methods in Molecular Biology, 89–100. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9837-1_7.
Der volle Inhalt der QuelleParrington, John. „Next Year’s Models“. In Redesigning Life, 111–32. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198766834.003.0006.
Der volle Inhalt der QuelleCorbett, Brian, und Jeannie Chin. „Mouse models in bioscience research“. In Tools and Techniques in Biomolecular Science. Oxford University Press, 2013. http://dx.doi.org/10.1093/hesc/9780199695560.003.0019.
Der volle Inhalt der QuelleLiu, Wei, Xin Wang und Elizabeth J. Cartwright. „Transgenesis“. In Molecular Biology and Biotechnology, 155–90. 7. Aufl. The Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788017862-00155.
Der volle Inhalt der QuelleLevy, Isaac, Matthew Starost, Evan Ball, Fabio Rueda Faucz, Spyros Koliavasillis, Anelia Horvath, Kitman Tsang et al. „Phosphodiesterase 11A (Pde11a) Expression in Mouse Tissues and Characterization of a Pde11a Mouse Knock-Out Model“. In BASIC/TRANSLATIONAL - Development & Epigenetics of Steroid Biology & Neoplasia, P1–41—P1–41. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part1.p2.p1-41.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Knockin mouse model"
Ma, Hechun, Yi Li, Ping Yang, Renxing Zhang, Dongxiao Feng, Jian Fei, Ruilin Sun und Daniel X. He. „14 Humanized TFR1/CD71 knockin mouse model enables in vivo assessment of TFR1-targeted antibody therapies for cancer and beyond to across the blood-brain barrier“. In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0014.
Der volle Inhalt der QuelleMahmoud, Ahmed M., Bunyen Teng, S. Jamal Mustafa und Osama M. Mukdadi. „High-Frequency Ultrasound Tissue Classification of Atherosclerotic Plaques in an APOE-KO Mouse Model Using Spectral Analysis“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13061.
Der volle Inhalt der QuelleWan, William, und Rudolph L. Gleason. „Collagen Fiber Angle Quantification of Carotid Arteries From Fibulin-5 Null Mice“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53685.
Der volle Inhalt der QuelleXiong, Shunbin, Yun Zhang und Guillermina Lozano. „Abstract B07: Gain of function activities of p53R245W in a conditional knock-in mouse model“. In Abstracts: AACR Special Conference on Tumor Metastasis; November 30-December 3, 2015; Austin, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tummet15-b07.
Der volle Inhalt der QuelleBertoni, Arinna, Sonia Carta, Chiara Baldovini, Federica Penco, Enrica Balza, Silvia Borghini, Marco DI Duca et al. „OP0106 A NOVEL KNOCK-IN MOUSE MODEL OF CAPS THAT DEVELOPS AMYLOIDOSIS: THERAPEUTIC EFFICACY OF PROTON PUMP INHIBITORS“. In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.5727.
Der volle Inhalt der QuelleYoshida, Kyoko, Claire Reeves, Jan Kitajewski, Ronald Wapner, Joy Vink, Michael Fernandez und Kristin Myers. „Anthrax Toxin Receptor 2 Knock-Out and Wild Type Mouse Cervix Exhibit Time-Dependent Mechanical Properties“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80732.
Der volle Inhalt der QuelleDiaz Martinez, Myriam, Masoud Ghamari-Langroudi, Aliya Gifford, Roger Cone und E. B. Welch. „Automated pipeline to analyze non-contact infrared images of the paraventricular nucleus specific leptin receptor knock-out mouse model“. In SPIE Medical Imaging, herausgegeben von Barjor Gimi und Robert C. Molthen. SPIE, 2015. http://dx.doi.org/10.1117/12.2082102.
Der volle Inhalt der QuelleHilhorst, Maria H., Liesbeth Houkes, Hanneke Korsten, Monique Mommersteeg, Jan Trapman und Rob Ruijtenbeek. „Abstract 4046: Direct detection of AKT/PKB activity in a Pten knock out mouse model using dynamic peptide microarrays“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4046.
Der volle Inhalt der QuelleSong, Ihn Young, Atul Kumar, Reyno Delrosario, Jian-Hua Mao und Allan Balmain. „Abstract LB-258: The human Aurora-A kinase Phe31Ile polymorphism affects cancer susceptibility in a knock-in mouse model.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-lb-258.
Der volle Inhalt der QuelleHummel, S., L. Slemann, J. Gnoerich, L. H. Kunze, G. Biechele, P. E. Sanchez, C. Haass et al. „F-18-florbetaben-PET shows distinct distribution patterns of β-amyloid in different knock-in AD mouse models“. In 60. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1746038.
Der volle Inhalt der Quelle