Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Klebsormidium nitens“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Klebsormidium nitens" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Klebsormidium nitens"
Valchev, Dobril, Irina Ribarova, Blagoy Uzunov und Maya Stoyneva-Gärtner. „Photo-sequencing batch reactor with Klebsormidium nitens: a promising microalgal biotechnology for sustainable phosphorus management in wastewater treatment plants“. Water Science and Technology 83, Nr. 10 (16.04.2021): 2463–76. http://dx.doi.org/10.2166/wst.2021.149.
Der volle Inhalt der QuellePetlyovana, V., und Chen Minglei. „Purification of microalgae crops of ACKU collection from fungal contaminants“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology 83, Nr. 4 (2020): 29–32. http://dx.doi.org/10.17721/728_2748.2020.83.29-32.
Der volle Inhalt der QuelleAllaguvatova, Rezeda Z., Arthur Yu Nikulin, Vyacheslav Yu Nikulin, Veronika B. Bagmet und Lira A. Gaysina. „Study of Biodiversity of Algae and Cyanobacteria of Mutnovsky and Gorely Volcanoes Soils (Kamchatka Peninsula) Using a Polyphasic Approach“. Diversity 14, Nr. 5 (07.05.2022): 375. http://dx.doi.org/10.3390/d14050375.
Der volle Inhalt der QuelleOhtaka, Kinuka, Koichi Hori, Yuri Kanno, Mitsunori Seo und Hiroyuki Ohta. „Primitive Auxin Response without TIR1 and Aux/IAA in the Charophyte Alga Klebsormidium nitens“. Plant Physiology 174, Nr. 3 (22.05.2017): 1621–32. http://dx.doi.org/10.1104/pp.17.00274.
Der volle Inhalt der QuelleTakano, Hiroyoshi, Takashi Tsunefuka, Susumu Takio, Hayato Ishikawa und Katsuaki Takechi. „Visualization of Plastid Peptidoglycan in the Charophyte Alga Klebsormidium nitens Using a Metabolic Labeling Method“. CYTOLOGIA 83, Nr. 4 (25.12.2018): 375–80. http://dx.doi.org/10.1508/cytologia.83.375.
Der volle Inhalt der QuelleValchev, Dobril, Irina Ribarova, Blagoy Uzunov, Maya Stoyneva-Gärtner und Valentina Lyubomirova. „Reclamation Potential of Onsite Wastewater Post-Treatment with Microalgae: Chemical Elements Perspective“. Processes 11, Nr. 6 (15.06.2023): 1819. http://dx.doi.org/10.3390/pr11061819.
Der volle Inhalt der QuelleSegura-Morales, F. J., A. Molina-Miras, M. C. Cerón-García, A. Sánchez-Mirón, S. Seoane, A. Contreras-Gómez und F. García-Camacho. „Unveiling potential of promising filamentous microalga Klebsormidium cf. nitens: Shear stress resilience and carotenoid-fatty acid dynamics in tubular photobioreactor“. Bioresource Technology 407 (September 2024): 131147. http://dx.doi.org/10.1016/j.biortech.2024.131147.
Der volle Inhalt der QuelleYang, Kim, Kim und Suh. „Functional Characterization of Physcomitrella patens Glycerol-3-Phosphate Acyltransferase 9 and an Increase in Seed Oil Content in Arabidopsis by Its Ectopic Expression“. Plants 8, Nr. 8 (13.08.2019): 284. http://dx.doi.org/10.3390/plants8080284.
Der volle Inhalt der QuelleKuroiwa, Tsuneyoshi, Mio Ohnuma, Yuuta Imoto und Haruko Kuroiwa. „Lipid Droplet Formation in Cells of the Filamentous Green Alga Klebsormidium nitens as Revealed by BODIOY-DiOC6 and BODIPY-Nile Red Double-Staining Microscopy“. CYTOLOGIA 79, Nr. 4 (2014): 501–7. http://dx.doi.org/10.1508/cytologia.79.501.
Der volle Inhalt der QuelleSolis, Celymar Angela, Miing-Tiem Yong, Meixue Zhou, Gayatri Venkataraman, Lana Shabala, Paul Holford, Sergey Shabala und Zhong-Hua Chen. „Evolutionary Significance of NHX Family and NHX1 in Salinity Stress Adaptation in the Genus Oryza“. International Journal of Molecular Sciences 23, Nr. 4 (14.02.2022): 2092. http://dx.doi.org/10.3390/ijms23042092.
Der volle Inhalt der QuelleDissertationen zum Thema "Klebsormidium nitens"
Chaudron, Zoé. „Identification et caractérisation fonctionnelle de protéines S-nitrosées chez l'algue Klebsormidium nitens“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK041.
Der volle Inhalt der QuelleNitric oxide (NO) is a major ubiquitous component of cell signaling, exerting its effects partly through protein S-nitrosation. This post-translational modification can impact protein activity, subcellular localization, and the ability to form protein complexes. Therefore, the characterization of S-nitrosated proteins is of great interest for elucidating NO functions. Previously, our laboratory provided provided evidence that land plants do not possess NO Synthase (NOS), the main NO-synthesizing enzyme in metazoans (Jeandroz et al., 2016). However, some algae species possess NOS-relative sequences, raising questions about their biochemistry and roles in these organisms. We focused on identifying S-nitrosated proteins in Klebsormidium nitens, a freshwater algal species which possess two NOS-relative sequences in its genome (Chatelain et al., 2022) and considered a model for studying plant adaptation to terrestrial life (Hori et al., 2014). We identified 43 candidate proteins with significantly higher levels of S-nitrosation under salt stress conditions. Orthology analysis was performed with Arabidopsis thaliana to determine the potential function of these proteins. We selected 3 proteins among them to study the role of their S-nitrosation in the salt stress response. These proteins are Protein Phosphatase 1 (PPH1), Histone Deacetylase 14 (HDA14), and Inositol Polyphosphate Multikinase 2 (IPK2).PPH1 is a crucial protein in terrestrial plant adaptation to light conditions. Characterization of KnPPH1 was initiated, but difficulties quickly arose, mainly due to poor annotation of its sequence in databases and difficulty in producing it in a heterologous system. HDA14 from A. thaliana and rice is a chloroplastic histone deacetylase, responsible for the deacetylation of proteins involved in photosynthesis, as well as the deacetylation of N-acetyl-serotonin into serotonin, precursors to melatonin synthesis. The sequence of KnHDA14 was verified, as well as its chloroplastic localization. We were able to produce it in a bacterial system and confirmed its deacetylase activity, which appears to be inhibited by NO. Finally, IPK2 in A. thaliana is an inositol phosphate (InsP) kinase. InsPs are more or less phosphorylated molecules involved in cell signaling and stress response. We have shown that KnIPK2 can phosphorylate but also, more surprisingly, can dephosphorylate certain InsPs. Confirming our in silico predictions, in vitro S-nitrosation of KnIPK2 by exogenous NO appears to inhibit its activity.In summary, this thesis has provided pioneering results on NO signaling in an algae. Additionally, this work demonstrates the involvement of NO in new signaling pathways, and suggests new ideas for studying salt stress resistance