Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Kirchhoff vortex“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Kirchhoff vortex" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Kirchhoff vortex"
Wan, Yieh-Hei. „Bifurcation At Kirchhoff Elliptic vortex with eccentricity“. Dynamics and Stability of Systems 13, Nr. 3 (Januar 1998): 281–97. http://dx.doi.org/10.1080/02681119808806265.
Der volle Inhalt der QuelleSTRAWN, ROGER C., RUPAK BISWAS und ANASTASIOS S. LYRINTZIS. „HELICOPTER NOISE PREDICTIONS USING KIRCHHOFF METHODS“. Journal of Computational Acoustics 04, Nr. 03 (September 1996): 321–39. http://dx.doi.org/10.1142/s0218396x96000106.
Der volle Inhalt der QuelleOVCHINNIKOV, Y. N., und I. M. SIGAL. „The energy of Ginzburg–Landau vortices“. European Journal of Applied Mathematics 13, Nr. 2 (April 2002): 153–78. http://dx.doi.org/10.1017/s0956792501004752.
Der volle Inhalt der QuelleVladimirov, V. A., und K. I. Il'in. „Three-dimensional instability of an elliptic Kirchhoff vortex“. Fluid Dynamics 23, Nr. 3 (1988): 356–60. http://dx.doi.org/10.1007/bf01054740.
Der volle Inhalt der QuelleCrowdy, Darren, und Jonathan Marshall. „Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, Nr. 2060 (23.06.2005): 2477–501. http://dx.doi.org/10.1098/rspa.2005.1492.
Der volle Inhalt der QuelleLiang, Bin, Roger M. Waxler und Paul Markowski. „A theory for the emission of infrasound from Tornadoes“. Journal of the Acoustical Society of America 155, Nr. 3_Supplement (01.03.2024): A202. http://dx.doi.org/10.1121/10.0027306.
Der volle Inhalt der QuelleHong, Shuli, Jun Chi, Xin Xiang und Weiyu Lu. „Theoretical Model and Numerical Analysis of the Tip Leakage Vortex Variations of a Centrifugal Compressor“. Aerospace 9, Nr. 12 (15.12.2022): 830. http://dx.doi.org/10.3390/aerospace9120830.
Der volle Inhalt der QuelleNagem, Raymond, Guido Sandri, David Uminsky und C. Eugene Wayne. „Generalized Helmholtz–Kirchhoff Model for Two-Dimensional Distributed Vortex Motion“. SIAM Journal on Applied Dynamical Systems 8, Nr. 1 (Januar 2009): 160–79. http://dx.doi.org/10.1137/080715056.
Der volle Inhalt der QuelleZhang, Xiaoxiao, Xiang Su, Zhensen Wu und Shanzhe Wang. „Analyzing Vortex Light Beam Scattering Characteristics from a Random Rough Surface“. Photonics 10, Nr. 9 (22.08.2023): 955. http://dx.doi.org/10.3390/photonics10090955.
Der volle Inhalt der QuelleFukumoto, Yasuhide. „Analogy between a vortex-jet filament and the Kirchhoff elastic rod“. Fluid Dynamics Research 39, Nr. 7 (Juli 2007): 511–20. http://dx.doi.org/10.1016/j.fluiddyn.2006.12.004.
Der volle Inhalt der QuelleDissertationen zum Thema "Kirchhoff vortex"
Martin, Martin Laura. „Numerical study of sound scattering by isolated elliptic vortices and turbulent jet shear layers“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0025.
Der volle Inhalt der QuelleThis study is consecrated to the scattering of acoustic waves by isolated vortices and turbulent jet shear layers. When the acoustic waves pass through a volume of turbulence, the fluctuations in the turbulence change the propagation direction of the waves. In addition, if the turbulence evolves in time, there is also a change in the sound spectral content, causing spectral broadening. In order to better understand these phenomena, a series of numerical analyses have been carried out. For this purpose, a code provided by Siemens has been used where the Linearised Euler Equations are solved by the Discontinuous Galerkin method. It simulates the acoustic wave propagation over a base flow defined by the user. To take into account the spectral broadening, the code has been modified to be able to interpolate time-dependent external data in time and space onto the base flow. The interpolation has been tested by different convergence studies of the pressure field scattered by a 2-dimensional mixing layer. Other features have been also implemented to cope with the numerical instability waves caused by the inhomogeneity of the base flow. Initially, the scattering of acoustic waves caused by an isolated Kirchhoff elliptic vortex is investigated. When the vortex is fixed in space, the study focuses on the effects of the ellipticity, the orientation of the vortex regarding the direction of propagation of the incident acoustic wave, the tangential velocity of the vortex and its size regarding the acoustic waves. The scattering has been investigated also when the vortex is convected. Special attention has been devoted to its ellipticity and the velocity convection. The results show that the ellipticity and especially the orientation of the vortex play a key role in the scattering. Finally, the study of the scattering of sound by turbulent jet shear layers is conducted, where the acoustic source is located at the jet axis. For that, the data interpolated in the base flow of the DGM code belong to an external database of round jets simulated by LES. These jets have Mach numbers varying between 0.3 and 1.3, and their temperature is 1, 1.5 or 2.25 times the ambience temperature. These parameters modify the properties of the turbulent fluctuations. Therefore, the spectral content of these fluctuations is compared between the jets. After that, the pressure fields obtained with mean base flows and turbulent base flows, and the difference between them are presented. Their directivities are also discussed, as well as the spectra of the acoustic field. The spectra are characterized by a central tone at the source frequency and two lateral lobes. They are symmetric for high Mach numbers. The position of the lateral lobes shifts closer to the central tone and their levels increase with the jet temperature for jets with constant Mach number, which can be explained by the changes undergone by the turbulence fluctuations
Bücher zum Thema "Kirchhoff vortex"
Zeitlin, Vladimir. Vortex Dynamics on the f and beta Plane and Wave Radiation by Vortices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0006.
Der volle Inhalt der QuelleBuchteile zum Thema "Kirchhoff vortex"
Yang, Yisong. „Hamiltonian systems and applications“. In Mathematical Physics with Differential Equations, 1–28. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192872616.003.0001.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Kirchhoff vortex"
Li, Wenhua, Z. C. Zheng und Ying Xu. „Flow/Acoustic Mechanisms in Three-Dimensional Vortices Undergoing Sinusoidal-Wave Instabilities“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43163.
Der volle Inhalt der QuelleBidkar, Rahul A., Arvind Raman und Anil K. Bajaj. „Aeroelastic Stability of Wide Webs and Narrow Ribbons“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35169.
Der volle Inhalt der QuelleLee, Duck-Joo, Wan-Ho Jeon und Ki-Hoon Chung. „Development and Application of Fan Noise Prediction Method to Axial and Centrifugal Fan“. In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31209.
Der volle Inhalt der Quelle