Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Kinetics of non-isothermal crystallization.

Zeitschriftenartikel zum Thema „Kinetics of non-isothermal crystallization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Kinetics of non-isothermal crystallization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Eltahir, Yassir A., Haroon A. M. Saeed, Chen Yuejun, Yumin Xia, and Wang Yimin. "Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry." Journal of Polymer Engineering 34, no. 4 (2014): 353–58. http://dx.doi.org/10.1515/polyeng-2013-0250.

Der volle Inhalt der Quelle
Annotation:
Abstract The non-isothermal crystallization behavior of polyamide 5,6 (PA56) was investigated by differential scanning calorimeter (DSC), and the non-isothermal crystallization kinetics were analyzed using the modified Avrami equation, the Ozawa model, and the method combining the Avrami and Ozawa equations. It was found that the Avrami method modified by Jeziorny could only describe the primary stage of non-isothermal crystallization kinetics of PA56, the Ozawa model failed to describe the non-isothermal crystallization of PA56, while the combined approach could successfully describe the non-
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Ying-Guo, Wen-Bin Wu, Gui-Yun Lu, and Jun Zou. "Isothermal and non-isothermal crystallization kinetics and predictive modeling in the solidification of poly(cyclohexylene dimethylene cyclohexanedicarboxylate) melt." Journal of Elastomers & Plastics 49, no. 2 (2016): 132–56. http://dx.doi.org/10.1177/0095244316641327.

Der volle Inhalt der Quelle
Annotation:
Isothermal and non-isothermal crystallization kinetics of polycyclohexylene dimethylene cyclohexanedicarboxylate (PCCE) were investigated via differential scanning calorimetry (DSC). Isothermal melt crystallization kinetics were analyzed using the traditional Avrami equation. Non-isothermal melt crystallization kinetics data obtained from DSC were analyzed using the extended Avrami relation and a combination of the Avrami equation and the Ozawa relationship. The glass transition temperature, equilibrium melting point, isothermal crystallization activation energy, and non-isothermal crystalliza
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fu, Yang, Cuimeng Huo, Shuangyan Liu, Keqing Li, and Yuezhong Meng. "Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites." Nanomaterials 13, no. 12 (2023): 1814. http://dx.doi.org/10.3390/nano13121814.

Der volle Inhalt der Quelle
Annotation:
Non-isothermal crystallization kinetics of montmorillonite (MMT)/polyamide 610 (PA610) composites were readily prepared by in situ melt polymerization followed by a full investigation in terms of their microstructure, performance, and crystallization kinetics. The kinetic models of Jeziorny, Ozawa, and Mo were used in turn to fit the experimental data, in all of which Mo’s analytical method was found to be the best model for the kinetic data. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) studies were used to investigate the isothermal crystallization behavi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhi Qiang Wang, Zhi Qiang Wang, and Yong Ke Zhao and Xiang Feng Wu Yong Ke Zhao and Xiang Feng Wu. "Non-Isothermal Crystallization Kinetics of Graphene Oxide-Carbon Nanotubes Hybrids / Polyamide 6 Composites." Journal of the chemical society of pakistan 41, no. 3 (2019): 394. http://dx.doi.org/10.52568/000760/jcsp/41.03.2019.

Der volle Inhalt der Quelle
Annotation:
The hybrids combined by nano-materials with different dimensions usually possess much better enhancement effects than single one. Graphene oxide-carbon nanotubes hybrids / polyamide 6 composites has been fabricated. The non-isothermal crystallization kinetics of the as-prepared samples was discussed. Research results showed that increasing the cooling rate was in favor of increasing the crystallization rate and the degree of crystallinity for the as-prepared samples. Moreover, the crystallization rate was first decreased and then increased with increasing the hybrids loading. Furthermore, the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lee, Chain-Ming, Yeong-Iuan Lin, and Tsung-Shune Chin. "Crystallization kinetics of amorphous Ga–Sb–Te films: Part II. Isothermal studies by a time-resolved optical transmission method." Journal of Materials Research 19, no. 10 (2004): 2938–46. http://dx.doi.org/10.1557/jmr.2004.0379.

Der volle Inhalt der Quelle
Annotation:
Isothermal crystallization kinetics of amorphous Ga–Sb–Te films was studied by means of a time-resolved optical transmission method. Thin films with compositions along the pseudo-binary tie-lines Sb7Te3–GaSb and Sb2Te3–GaSb in the ternary phase diagram were prepared by the co-sputtering method. Crystallization of GaSbTe films reveals a two-stage process: an initial surface nucleation and coarsening (Stage 1) followed by the one-dimensional grain growth (Stage 2). The kinetic exponent (n) value in Stage 1 shows strong dependence on film compositions, while that of Stage 2 is less dependent. The
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yang, Xiaodong, Bin Yu, Hui Sun, et al. "Isothermal and Non-Isothermal Crystallization Kinetics of Poly(ethylene chlorotrifluoroethylene)." Polymers 14, no. 13 (2022): 2630. http://dx.doi.org/10.3390/polym14132630.

Der volle Inhalt der Quelle
Annotation:
The isothermal (IT) and non-isothermal (NIT) crystallization kinetics, morphology, and structure of poly(ethylene chlorotrifluoroethylene) (ECTFE) were investigated via differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (XRD). The Avrami equation could well describe the overall IT crystallization process of ECTFE, and, furthermore, the overall crystallization rate decreased at higher crystallization temperatures (Tc). The equilibrium melting point for ECTFE was found to be 238.66 °C. The activation energies for IT and NIT crystallizati
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hu, Hui E., Zhou Lu, Xiao Hong Su, and Jing Xin Deng. "Study of the crystallization kinetics of a Zr57Cu15.4Ni12.6Al10Nb5 amorphous alloy." International Journal of Materials Research 111, no. 10 (2020): 849–56. http://dx.doi.org/10.1515/ijmr-2020-1111009.

Der volle Inhalt der Quelle
Annotation:
Abstract The non-isothermal crystallization kinetics with heating rates ranging from 10 K s-1to 80 K s-1and the isothermal crystallization kinetics during annealing from the glass transition temperature to the crystallization onset temperature of a Zr57Cu15.4Ni12.6Al10Nb5 amorphous alloy were studied in detail using X-ray diffraction and differential scanning calorimetry. During non-isothermal crystallization, it is more difficult to nucleate than to grow, and the crystallization resistance increases first and then decreases. During isothermal crystallization of the alloy from 713- 728 K, ther
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Milićević, Bojana, Milena Marinović-Cincović, and Miroslav D. Dramićanin. "Non-isothermal crystallization kinetics of Y2Ti2O7." Powder Technology 310 (April 2017): 67–73. http://dx.doi.org/10.1016/j.powtec.2017.01.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Piccarolo, S., V. Brucato, and Z. Kiflie. "Non-isothermal crystallization kinetics of PET." Polymer Engineering & Science 40, no. 6 (2000): 1263–72. http://dx.doi.org/10.1002/pen.11254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Dao, Wang Shu Lu, Xiao Yan Wang, and Sen Yang. "Non-Isothermal Crystallization Kinetics of Mg61Zn35Ca4 Glassy Alloy." Materials Science Forum 898 (June 2017): 657–65. http://dx.doi.org/10.4028/www.scientific.net/msf.898.657.

Der volle Inhalt der Quelle
Annotation:
The non-isothermal crystallization kinetics of Mg61Zn35Ca4 glassy alloy prepared via melt-spinning were studied by using isoconversion method. The crystalline characterization of Mg61Zn35Ca4 was examined by X-ray diffraction. Different scanning calorimeter was used to investigate the non-isothermal crystallization kinetics at different heating rates (3-60 K/min). The calculated value of Avrami exponent obtained by Matusita method indicated that the crystalline transformation for Mg61Zn35Ca4 is a complex process of nucleation and growth. The Kissinger-Akahira-Sunose method was used to investiga
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Zhao, Xipo, Zheng Ding, Yuejun Zhang, Yingxue Wang, and Shaoxian Peng. "Preparation and crystallization kinetics of polyesteramide based on poly(L-lactic acid)." e-Polymers 18, no. 1 (2018): 97–104. http://dx.doi.org/10.1515/epoly-2017-0171.

Der volle Inhalt der Quelle
Annotation:
AbstractUsing the melt polycondensation method, a polyesteramide was prepared based on poly(L-lactic acid) prepolymer and poly(ε-caprolactam) prepolymer and was characterized by Fourier transform infrared spectroscopy and 1H-NMR. Isothermal crystallization behavior at different temperatures and non-isothermal crystallization kinetics at different cooling rates were investigated by differential scanning calorimetry, and non-isothermal crystallization kinetics parameters were obtained using the Mo, Ozawa and Jeziorny methods. It was found that the increased cooling rates led to the broadening of
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Gicheha, Daisaku, Aicha Noura Cisse, Ariful Bhuiyan та Nabila Shamim. "Non-Isothermal Crystallization Kinetics of Poly (ɛ-Caprolactone) (PCL) and MgO Incorporated PCL Nanofibers". Polymers 15, № 14 (2023): 3013. http://dx.doi.org/10.3390/polym15143013.

Der volle Inhalt der Quelle
Annotation:
The study delves into the kinetics of non-isothermal crystallization of Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire crystallization information and investigate the kinetics behavior of the two types of nanofibers under different cooling rates ranging from 0.5–5 K/min. The results show that the crystallization rate decreases at higher crystallization temperatures. Furthermore, the parameters of non-isothermal crystallization kinetics were investigated via several mathematical models, in
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Chattopadhyay, C., S. Sarkar, S. Sangal, and K. Mondal. "Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data." Transactions of the Indian Institute of Metals 67, no. 6 (2014): 945–58. http://dx.doi.org/10.1007/s12666-014-0422-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Jin, Ruijie, Zehong Chen, Yidan Ouyang, et al. "Enhancing the Non-Isothermal Crystallization Kinetics of Polylactic Acid by Incorporating a Novel Nucleating Agent." Polymers 16, no. 22 (2024): 3204. http://dx.doi.org/10.3390/polym16223204.

Der volle Inhalt der Quelle
Annotation:
Polylactic acid (PLA) is a widely recognized biodegradable polymer. However, the slow crystallization rate of PLA restricts its practical applications. In this study, camphor leaf biochar decorated with multi-walled carbon nanotubes (C@MWCNTs) was prepared using the strong adhesive properties of polydopamine, and PLA/C@MWCNTs composites were fabricated via the casting solution method. The influence of C@MWCNTs as a novel nucleating agent on the melt behavior and non-isothermal crystallization behavior of PLA was investigated using differential scanning calorimetry (DSC). The crystallization ki
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Liu, Bingxiao, Guosheng Hu, Jingting Zhang, and Zhongqiang Wang. "The non-isothermal crystallization behavior of polyamide 6 and polyamide 6/HDPE/MAH/L-101 composites." Journal of Polymer Engineering 39, no. 2 (2019): 124–33. http://dx.doi.org/10.1515/polyeng-2018-0170.

Der volle Inhalt der Quelle
Annotation:
AbstractStudy of the crystallization kinetics is particularly necessary for the analysis and design of processing operations, especially the non-isothermal crystallization behavior, which is due to the fact that most practical processing techniques are carried out under non-isothermal conditions. The non-isothermal crystallization behaviors of polyamide 6 (PA6) and PA6/high-density polyethylene/maleic anhydride/2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (PA6/HDPE/MAH/L-101) composites were investigated by differential scanning calorimetry (DSC). The crystallization kinetics under non-isotherm
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Li, Cheng Peng, Mary She, and Ling Xue Kong. "Non-Isothermal Crystallization Kinetics of Polyvinyl Alcohol-Graphene Oxide Composites." Applied Mechanics and Materials 446-447 (November 2013): 206–9. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.206.

Der volle Inhalt der Quelle
Annotation:
Polyvinlyl alcohol (PVA)/graphene oxide (GO) composites are prepared by solution blending method. And the non-isothermal crystallization kinetics of as-prepared composites is evaluated by differential scanning calorimetry (DSC). The results indicate the graphene oxide can significantly modify the non-isothermal crystallization behavior of the PVA, for instance improved crystallization temperature and prolonged crystallization time. Enhanced crystallization temperature illustrates that GO can act as effective nucleating agent. However, prolonged crystallization time means that GO can retard the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Keridou, Ina, Luis J. del Valle, Lutz Funk, Pau Turon, Lourdes Franco, and Jordi Puiggalí. "Non-Isothermal Crystallization Kinetics of Poly(4-Hydroxybutyrate) Biopolymer." Molecules 24, no. 15 (2019): 2840. http://dx.doi.org/10.3390/molecules24152840.

Der volle Inhalt der Quelle
Annotation:
The non-isothermal crystallization of the biodegradable poly(4-hydroxybutyrate) (P4HB) has been studied by means of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). In the first case, Avrami, Ozawa, Mo, Cazé, and Friedman methodologies were applied. The isoconversional approach developed by Vyazovkin allowed also the determination of a secondary nucleation parameter of 2.10 × 105 K2 and estimating a temperature close to 10 °C for the maximum crystal growth rate. Similar values (i.e., 2.22 × 105 K2 and 9 °C) were evaluated from non-isothermal Avrami parameters. A
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lapuk, S. E., and A. V. Gerasimov. "Kinetic stability and glass-forming ability of phenacetin by fast scanning calorimetry." Журнал общей химии 93, no. 5 (2023): 794–800. http://dx.doi.org/10.31857/s0044460x23050141.

Der volle Inhalt der Quelle
Annotation:
In the present work, an amorphous active pharmaceutical ingredient, phenacetin, was obtained by fast scanning calorimetry. The critical cooling rate and kinetic fragility of its supercooled melt were determined. The process of cold crystallization of phenacetin was studied by methods of isothermal and non-isothermal kinetics. It was found that the best correspondence between the two kinetic approaches is observed in the case of using the Nakamura crystallization model. The results obtained can find their application in the development of approaches to obtaining amorphous forms of drugs prone t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Sarkar, Rahul, and Zushu Li. "Isothermal and Non-isothermal Crystallization Kinetics of Mold Fluxes used in Continuous Casting of Steel: A Review." Metallurgical and Materials Transactions B 52, no. 3 (2021): 1357–78. http://dx.doi.org/10.1007/s11663-021-02099-5.

Der volle Inhalt der Quelle
Annotation:
AbstractCasting powders or mold fluxes, as they are more commonly known, are used in the continuous casting of steel to prevent the steel shell from sticking to the copper mold. The powders first melt and create a pool of liquid flux above the liquid steel in the mold, and then the liquid mold fluxes penetrate into the gap between water-cooled copper mold and steel shell, where crystallization of solid phases takes place as the temperatures gradually drop. It is important to understand the crystallization behavior of these mold fluxes used in the continuous casting of steel because the crystal
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Erukhimovitch, V., and J. Baram. "A model for non-isothermal crystallization kinetics." Journal of Non-Crystalline Solids 208, no. 3 (1996): 288–93. http://dx.doi.org/10.1016/s0022-3093(96)00521-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Fan-Chiang, C. C., W. Y. Chiu, K. H. Hsieh, and L. W. Chen. "Crystallization of polypropylene II. Non-isothermal kinetics." Materials Chemistry and Physics 34, no. 1 (1993): 52–57. http://dx.doi.org/10.1016/0254-0584(93)90119-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bandyopadhyay, Jayita, Suprakas Sinha Ray, and Mosto Bousmina. "Nonisothermal Crystallization Kinetics of Poly(ethylene terephthalate) Nanocomposites." Journal of Nanoscience and Nanotechnology 8, no. 4 (2008): 1812–22. http://dx.doi.org/10.1166/jnn.2008.18247.

Der volle Inhalt der Quelle
Annotation:
This article reports the nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) nanocomposites. The non-isothermal crystallization behaviors of PET and the nanocomposite samples are studied by differential scanning calorimetry (DSC). Various models, namely the Avrami method, the Ozawa method, and the combined Avrami-Ozawa method, are applied to describe the kinetics of the non-isothermal crystallization. The combined Avrami and Ozawa models proposed by Liu and Mo also fit with the experimental data. Different kinetic parameters determined from these models prove that in n
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ou, Rongxian, Chuigen Guo, Yanjun Xie, and Qingwen Wang. "Non-isothermal crystallization kinetics of Kevlar fiber-reinforced wood flour/HDPE composites." BioResources 6, no. 4 (2011): 4547–65. http://dx.doi.org/10.15376/biores.6.4.4547-4565.

Der volle Inhalt der Quelle
Annotation:
Non-isothermal crystallization of neat high density polyethylene (HDPE), wood flour (WF)/HDPE composite (WPC), virgin Kevlar fiber (KF) reinforced WPC (KFWPC), and grafted Kevlar fiber (GKF) reinforced WPC (GKFWPC) was investigated by means of differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). Several theoretical models were applied to describe the process of non-isothermal crystallization. The results showed that the Avrami analysis modified by Jeziorny and a method developed by Mo and coworkers successfully described the non-isothermal crystallization behavior o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ajala, Oluwakemi, Caroline Werther, Rauf Mahmudzade, Peyman Nikaeen, and Dilip Depan. "Crystallization Kinetics of Poly(lactic acid)–Graphene Nanoscroll Nanocomposites: Role of Tubular, Planar, and Scrolled Carbon Nanoparticles." C 7, no. 4 (2021): 75. http://dx.doi.org/10.3390/c7040075.

Der volle Inhalt der Quelle
Annotation:
Graphene nanoscrolls (GNS) are 1D carbon-based nanoparticles. In this study, they were investigated as a heterogeneous nucleating agent in the poly(lactic acid) (PLA) matrix. The isothermal and non-isothermal melting behavior and crystallization kinetics of PLA-GNS nanocomposites were investigated using a differential scanning calorimeter (DSC). Low GNS content not only accelerated the crystallization rate, but also the degree of crystallinity of PLA. The Avrami model was used to fit raw experimental data, and to evaluate the crystallization kinetics for both isothermal and non-isothermal runs
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gupta, Sahil, Xuepei Yuan, T. C. Mike Chung, M. Cakmak, and R. A. Weiss. "Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene." Polymer 55, no. 3 (2014): 924–35. http://dx.doi.org/10.1016/j.polymer.2013.12.063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Tkalcec, E. "Isothermal and non-isothermal crystallization kinetics of zinc-aluminosilicate glasses." Thermochimica Acta 378, no. 1-2 (2001): 135–44. http://dx.doi.org/10.1016/s0040-6031(01)00627-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wang, Kun Yan, and Bin Li. "Effect of Graphene Oxide on Non-Isothermal Melt Crystallization Kinetics of Poly(Trimethylene Terephthalate)." Key Engineering Materials 748 (August 2017): 74–78. http://dx.doi.org/10.4028/www.scientific.net/kem.748.74.

Der volle Inhalt der Quelle
Annotation:
Poly (trimethylene terephthalate) (PTT)/graphene oxide (GO) nanocomposites were prepared by melt mixing. The effect of GO on non-isothermal melt crystallization kinetics of PTT with different amounts of GO were investigated by differential scanning calorimetry (DSC). The Avrami, Ozawa and Mo were used to analyze the non-isothermal crystallization process. The results of Avrami analysis showed that adding GO into PTT matrix changed the crystallization nucleation of PTT. Ozawa analysis could not be used for the non-isothermal crystallization of PTT/GO nanocomposites. According to the results of
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Chen, Yanhua, Xiayin Yao, Qun Gu, and Zhijuan Pan. "Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites." Journal of Polymer Engineering 33, no. 2 (2013): 163–71. http://dx.doi.org/10.1515/polyeng-2012-0124.

Der volle Inhalt der Quelle
Annotation:
Abstract Poly(lactic acid) (PLA)/graphene nanocomposites were prepared by solution blending and the dispersibility of graphene in the PLA matrix was examined by transmission electron microscopy (TEM). The non-isothermal crystallization behaviors of pure PLA and PLA/graphene nanocomposites from the melt were investigated by differential scanning calorimetry (DSC). The results showed that the graphene could play a role as a heterogeneous nucleating agent during the non-isothermal crystallizing process of PLA, and accelerate the crystallization rate. The non-isothermal crystallizing data were ana
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Qu, Dezhi, Jiayang Cai, Fei Huang, et al. "High-Performance Optical PET Analysis via Non-Isothermal Crystallization Kinetics." Polymers 14, no. 15 (2022): 3044. http://dx.doi.org/10.3390/polym14153044.

Der volle Inhalt der Quelle
Annotation:
The optical properties of PET have always been a problem that related research has been trying to break through. In the previous work, we modified PET by adding PSLDH (phosphate antioxidant) to obtain a PET film with excellent optical properties. Through non-isothermal crystallization kinetic analysis of modified PET, we hope to verify the conclusion of optical properties by the effect of PSLDH addition on the crystallization properties of PET. PET and PSLDH modified PET were tested by DSC at different cooling rates. The non-isothermal crystallization kinetic process was calculated and analyze
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gu, Xiao Hua, Jia Liang Zhou, and Jian Hong Liu. "Effects of Nanoparticles TiN on the Crystallization Behavior of PET Nanocomposites." Advanced Materials Research 284-286 (July 2011): 353–59. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.353.

Der volle Inhalt der Quelle
Annotation:
In this paper, crystallization kinetics behavior of a high heat-absorbing PET / TiN nanocomposite ,the effect of the crystallization behavior of adding nanoendothermic agent,and their crystallization rate and crystallization were studied by differential scanning calorimeter (DSC) ,researching the effect of crystallization behavior of PET with modified TiN and using Avrami equation to study non-isothermal crystallization kinetics. The results show that the kinetic rate constant Zc increasing with the increase of cooling rate, the crystallization half time t1 / 2 subsequently reduced, the crysta
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Deptuch, Aleksandra, Anna Paliga, Anna Drzewicz, Marcin Piwowarczyk, Magdalena Urbańska, and Ewa Juszyńska-Gałązka. "Crystallization Kinetics of an Equimolar Liquid Crystalline Mixture and Its Components." Applied Sciences 14, no. 24 (2024): 11701. https://doi.org/10.3390/app142411701.

Der volle Inhalt der Quelle
Annotation:
This new equimolar mixture comprises the liquid crystalline compounds MHPOBC and partially fluorinated 3F2HPhF6. The phase sequence of the mixture was determined by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction, and broadband dielectric spectroscopy. The enantiotropic smectic A*, C*, and CA* phases were observed for the mixture. Only partial crystallization of the mixture was observed during cooling at 2–40 K/min, and the remaining smectic CA* phase underwent vitrification. In contrast, the crystallization of the pure components was complete or almost comp
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Qiu, Bi Wei, Jing Bo Chen, Bin Zhang, and Chang Yu Shen. "Simulation of Non-Isothermal Crystallization under Varying Cooling Rates for Polymer Melts." Advanced Materials Research 221 (March 2011): 159–64. http://dx.doi.org/10.4028/www.scientific.net/amr.221.159.

Der volle Inhalt der Quelle
Annotation:
Traditional studies of crystallization kinetics are often limited to idealized conditions where the temperatures or the cooling rates are constant. In real manufacturing processes, however, the external conditions change continuously, which make the kinetics of crystallization dependent on instantaneous conditions, especially on changing cooling rate. To obtain the crystallization information in manufacturing processes, lots of mathematical models for the non-isothermal crystallization kinetics are raised. But most of them concentrate on constant cooling rates melts crystallization behavior an
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Cao, Xinxin, Mengqi Wu, Aiguo Zhou, You Wang, Xiaofang He, and Libo Wang. "Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites." e-Polymers 17, no. 5 (2017): 373–81. http://dx.doi.org/10.1515/epoly-2017-0017.

Der volle Inhalt der Quelle
Annotation:
AbstractA novel two-dimensional material MXene was used to synthesize nanocomposites with linear low-density polyethylene (LLDPE). The influence of MXene on crystallization and thermal degradation kinetics of LLDPE was investigated. Non-isothermal crystallization kinetics was investigated by using differential scanning calorimetry (DSC). The experimental data was analyzed by Jeziorny theory and the Mo method. It is found that MXene acted as a nucleating agent during the non-isothermal crystallization process, and 2 wt% MXene incorporated in the nanocomposites could accelerate the crystallizati
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Tarani, Evangelia, Klementina Pušnik Črešnar, Lidija Fras Zemljič, et al. "Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers." Applied Sciences 11, no. 7 (2021): 3004. http://dx.doi.org/10.3390/app11073004.

Der volle Inhalt der Quelle
Annotation:
Poly(lactic acid) (PLA) nanocomposites with antimicrobial fillers have been increasingly explored as food packaging materials that are made of a biobased matrix and can minimize food loss due to spoilage. Some of the most commonly studied fillers are zinc oxide (ZnO), titanium dioxide (TiO2), and silver nanoparticles (AgNPs). In this work, nanocomposites with 1 wt.% of each filler were prepared by melt mixing. An extensive study of thermally stimulated processes such as crystallization, nucleation, degradation, and their kinetics was carried out using Differential Scanning Calorimetry (DSC) an
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Benamor, Ahmed, Cheikh Kadiri, Yazid Derouiche, and Ameur Ouali. "Investigating the thermal behavior and dehydroxylation kinetics of bentonite: isothermal and non-isothermal study." High Temperatures-High Pressures 53, no. 4 (2024): 289–308. http://dx.doi.org/10.32908/hthp.v53.1505.

Der volle Inhalt der Quelle
Annotation:
This paper aims to study the crystallization kinetics of local bentonite taken from the Maghnia region of Algeria after conducting the toasting process to powder with different temperature degrees 200, 400, 500, 700, 800, 900, 1000°C and 1100°C. The material was examined by differential thermal analysis (DTA) at different heating rates (10–50°C/min), and X ray diffraction (XRD). We used also Infrared Spectroscopy to detect the vibrations characteristic of the chemical bonds and to analyze the molecules forming the material. Scanning electron Microscopy (SEM) has been used to investigate the be
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Boukettaya, Sonia, Waseem Al Seddique, Ahmad Alawar, Hachmi Ben Daly, and Adel Hammami. "Cooling rate effects on the crystallization kinetics of polypropylene/date palm fiber composite materials." Science and Engineering of Composite Materials 23, no. 5 (2016): 523–33. http://dx.doi.org/10.1515/secm-2014-0324.

Der volle Inhalt der Quelle
Annotation:
AbstractNon-isothermal crystallization kinetics of polypropylene/date palm fiber (PP/DPF) composite materials were investigated in this study, using the differential scanning calorimetry (DSC) method. Different fiber contents and cooling rates, varying from 2.5°C/min to 20°C/min, were considered. The obtained results indicated that the initial crystallization temperature increases with the increase of the DPF content. This was attributed to the nucleating ability of these fibers. Several theoretical models were used to predict the non-isothermal crystallization kinetics of the materials consid
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Li, Xiaodong, Meishuai Zou, Lisha Lei та Longhao Xi. "Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis". Polymers 13, № 21 (2021): 3713. http://dx.doi.org/10.3390/polym13213713.

Der volle Inhalt der Quelle
Annotation:
The non-isothermal crystallization behaviors of poly (ethylene glycol) (PEG) and poly (ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) were investigated through a commercially available chip-calorimeter Flash DSC2+. The non-isothermal crystallization data under different cooling rates were analyzed by the Ozawa model, modified Avrami model, and Mo model. The results of the non-isothermal crystallization showed that the PCL block crystallized first, followed by the crystallization of the PEG block when the cooling rate was 50–200 K/s. However, only the PEG block can crystallize when the cooli
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Fu, Xubing, Xia Dong, Guisheng Yang, and Shulin Bai. "Non-isothermal crystallization kinetics of graphene/PA10T composites." Heliyon 8, no. 8 (2022): e10206. http://dx.doi.org/10.1016/j.heliyon.2022.e10206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Garnier, Louis, Sophie Duquesne, Serge Bourbigot, and René Delobel. "Non-isothermal crystallization kinetics of iPP/sPP blends." Thermochimica Acta 481, no. 1-2 (2009): 32–45. http://dx.doi.org/10.1016/j.tca.2008.10.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kong, L. H., Y. L. Gao, T. T. Song, G. Wang, and Q. J. Zhai. "Non-isothermal crystallization kinetics of FeZrB amorphous alloy." Thermochimica Acta 522, no. 1-2 (2011): 166–72. http://dx.doi.org/10.1016/j.tca.2011.02.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Cheng, Sirui, Chunju Wang, Mingzhen Ma, Debin Shan, and Bin Guo. "Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy." Thermochimica Acta 587 (July 2014): 11–17. http://dx.doi.org/10.1016/j.tca.2014.04.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Heeg, Bauke. "Fast algorithm for computing non-isothermal crystallization kinetics." Journal of Non-Crystalline Solids 438 (April 2016): 74–77. http://dx.doi.org/10.1016/j.jnoncrysol.2015.10.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Jiao, Chuanmei, Zhengzhou Wang, Xiaoming Liang, and Yuan Hu. "Non-isothermal crystallization kinetics of silane crosslinked polyethylene." Polymer Testing 24, no. 1 (2005): 71–80. http://dx.doi.org/10.1016/j.polymertesting.2004.07.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Svoboda, Roman, Daniela Brandová, and Jiří Málek. "Non-isothermal crystallization kinetics of GeTe4 infrared glass." Journal of Thermal Analysis and Calorimetry 123, no. 1 (2015): 195–204. http://dx.doi.org/10.1007/s10973-015-4937-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Prajapati, Sonal R., Supriya Kasyap, Ashmi T. Patel, and Arun Pratap. "Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass." Journal of Thermal Analysis and Calorimetry 124, no. 1 (2015): 21–33. http://dx.doi.org/10.1007/s10973-015-4979-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ding, Chengyi, Xuewei Lv, Yun Chen, and Chenguang Bai. "Non-isothermal crystallization kinetics for CaO–Fe2O3 system." Journal of Thermal Analysis and Calorimetry 124, no. 1 (2015): 509–18. http://dx.doi.org/10.1007/s10973-015-5105-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhang, Ruixin, Mingbo Gu, and Guoqiang Chen. "Non-isothermal crystallization kinetics of kaolin modified polyester." Journal of Wuhan University of Technology-Mater. Sci. Ed. 26, no. 5 (2011): 945–49. http://dx.doi.org/10.1007/s11595-011-0342-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Li, Bingfan, Gang Liu, Shuyi Ren, et al. "Non-isothermal crystallization kinetics of waxy crude oil." Petroleum Science and Technology 37, no. 3 (2018): 282–89. http://dx.doi.org/10.1080/10916466.2018.1539755.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Dyamant, I., E. Korin, and J. Hormadaly. "Non-isothermal crystallization kinetics of La2CaB10O19 from glass." Journal of Non-Crystalline Solids 357, no. 7 (2011): 1690–95. http://dx.doi.org/10.1016/j.jnoncrysol.2011.01.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Liu, Yufei, Li Wang, Yong He, Zhongyong Fan, and Suming Li. "Non-isothermal crystallization kinetics of poly(L-lactide)." Polymer International 59, no. 12 (2010): 1616–21. http://dx.doi.org/10.1002/pi.2894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!