Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Kidney-glomeruli segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Kidney-glomeruli segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Kidney-glomeruli segmentation"
Altini, Nicola, Giacomo Donato Cascarano, Antonio Brunetti, Irio De Feudis, Domenico Buongiorno, Michele Rossini, Francesco Pesce, Loreto Gesualdo und Vitoantonio Bevilacqua. „A Deep Learning Instance Segmentation Approach for Global Glomerulosclerosis Assessment in Donor Kidney Biopsies“. Electronics 9, Nr. 11 (25.10.2020): 1768. http://dx.doi.org/10.3390/electronics9111768.
Der volle Inhalt der QuelleHan, Yutong, Zhan Zhang, Yafeng Li, Guoqing Fan, Mengfei Liang, Zhijie Liu, Shuo Nie, Kefu Ning, Qingming Luo und Jing Yuan. „FastCellpose: A Fast and Accurate Deep-Learning Framework for Segmentation of All Glomeruli in Mouse Whole-Kidney Microscopic Optical Images“. Cells 12, Nr. 23 (30.11.2023): 2753. http://dx.doi.org/10.3390/cells12232753.
Der volle Inhalt der QuelleAltini, Nicola, Giacomo Donato Cascarano, Antonio Brunetti, Francescomaria Marino, Maria Teresa Rocchetti, Silvia Matino, Umberto Venere et al. „Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections“. Electronics 9, Nr. 3 (19.03.2020): 503. http://dx.doi.org/10.3390/electronics9030503.
Der volle Inhalt der QuelleDimitri, Giovanna Maria, Paolo Andreini, Simone Bonechi, Monica Bianchini, Alessandro Mecocci, Franco Scarselli, Alberto Zacchi, Guido Garosi, Thomas Marcuzzo und Sergio Antonio Tripodi. „Deep Learning Approaches for the Segmentation of Glomeruli in Kidney Histopathological Images“. Mathematics 10, Nr. 11 (05.06.2022): 1934. http://dx.doi.org/10.3390/math10111934.
Der volle Inhalt der QuelleJavvadi, Sai. „Evaluating the Impact of Color Normalization on Kidney Image Segmentation“. International Journal on Cybernetics & Informatics 12, Nr. 5 (12.08.2023): 93–105. http://dx.doi.org/10.5121/ijci.2023.120509.
Der volle Inhalt der QuelleHermsen, Meyke, Thomas de Bel, Marjolijn den Boer, Eric J. Steenbergen, Jesper Kers, Sandrine Florquin, Joris J. T. H. Roelofs et al. „Deep Learning–Based Histopathologic Assessment of Kidney Tissue“. Journal of the American Society of Nephrology 30, Nr. 10 (05.09.2019): 1968–79. http://dx.doi.org/10.1681/asn.2019020144.
Der volle Inhalt der QuelleKawazoe, Yoshimasa, Kiminori Shimamoto, Ryohei Yamaguchi, Issei Nakamura, Kota Yoneda, Emiko Shinohara, Yukako Shintani-Domoto, Tetsuo Ushiku, Tatsuo Tsukamoto und Kazuhiko Ohe. „Computational Pipeline for Glomerular Segmentation and Association of the Quantified Regions with Prognosis of Kidney Function in IgA Nephropathy“. Diagnostics 12, Nr. 12 (25.11.2022): 2955. http://dx.doi.org/10.3390/diagnostics12122955.
Der volle Inhalt der QuelleMarechal, Elise, Adrien Jaugey, Georges Tarris, Michel Paindavoine, Jean Seibel, Laurent Martin, Mathilde Funes de la Vega et al. „Automatic Evaluation of Histological Prognostic Factors Using Two Consecutive Convolutional Neural Networks on Kidney Samples“. Clinical Journal of the American Society of Nephrology 17, Nr. 2 (03.12.2021): 260–70. http://dx.doi.org/10.2215/cjn.07830621.
Der volle Inhalt der QuelleDr. Harikiran Jonnadula, Sitanaboina S. L. Parvathi,. „Small Blob Detection and Classification in 3D MRI Human Kidney Images Using IMBKM and EDCNN Classifier“. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, Nr. 5 (11.04.2021): 629–42. http://dx.doi.org/10.17762/turcomat.v12i5.1061.
Der volle Inhalt der QuelleCelia, A. I., X. Yang, M. A. Petri, A. Rosenberg und A. Fava. „POS0288 DEGRANULATING PR3+ MYELOID CELLS CHARACTERIZE PROLIFERATIVE LUPUS NEPHRITIS“. Annals of the Rheumatic Diseases 82, Suppl 1 (30.05.2023): 385.2–386. http://dx.doi.org/10.1136/annrheumdis-2023-eular.767.
Der volle Inhalt der QuelleDissertationen zum Thema "Kidney-glomeruli segmentation"
Nisar, Zeeshan. „Self-supervised learning in the presence of limited labelled data for digital histopathology“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Der volle Inhalt der QuelleA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision