Zeitschriftenartikel zum Thema „Keldysha“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Keldysha.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Keldysha" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Radovskaya, A. A., und A. G. Semenov. „Lokal'nyy kvench v tekhnike Keldysha“. Письма в Журнал экспериментальной и теоретической физики 118, Nr. 11-12 (12) (15.12.2023): 921–27. http://dx.doi.org/10.31857/s1234567823240096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Popov, Vladimir S. „Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)“. Uspekhi Fizicheskih Nauk 174, Nr. 9 (2004): 921. http://dx.doi.org/10.3367/ufnr.0174.200409a.0921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Capasso, Federico, Paul Corkum, Olga Kocharovskaya, Lev Pitaevskii und Michael V. Sadovskii. „Leonid Keldysh“. Physics Today 70, Nr. 6 (Juni 2017): 75–76. http://dx.doi.org/10.1063/pt.3.3605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Galiautdinov, Andrei. „Anisotropic Keldysh interaction“. Physics Letters A 383, Nr. 25 (September 2019): 3167–74. http://dx.doi.org/10.1016/j.physleta.2019.07.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Polilova, Tatyana Alekseevna. „Keldysh Institute Preprints in the diagrams of the Science Space system“. Keldysh Institute Preprints, Nr. 27 (2022): 1–38. http://dx.doi.org/10.20948/prepr-2022-27.

Der volle Inhalt der Quelle
Annotation:
The bibliometric and statistical indicators of the scientific journal "Keldysh Institute Preprints" are considered. The functionality of the system named “Science Space” is demonstrated. The issues of correspondence of the thematic directions of the GRNTI rubricator used in the Science Space system and the thematic scientific directions fixed in the charter and in the electronic library of the Keldysh Insitute are discussed. The given bibliometric characteristics of the "Keldysh Institute Preprints" is forced to be more careful about the interpretation of scientometric indicators and the results of the ratings in the eLibrary.ru.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Andreev, Aleksandr F., N. G. Basov, Vitalii L. Ginzburg, Aleksandr V. Gurevich, Boris B. Kadomtsev, D. A. Kirzhnits, Yurii V. Kopaev et al. „Leonid Veniaminovich Keldysh (On his sixtieth birthday)“. Uspekhi Fizicheskih Nauk 161, Nr. 4 (1991): 179. http://dx.doi.org/10.3367/ufnr.0161.199104h.0179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Volkov, Boris A., Aleksandr V. Gurevich, Vitalii L. Ginzburg, Yurii V. Kopaev, Oleg N. Krokhin, Vladimir I. Ritus, Viktor P. Silin, V. Ya Fainberg, Evgenii L. Feinberg und Dmitrii S. Chernavskii. „Leonid Veniaminovich Keldysh (on his seventieth birthday)“. Uspekhi Fizicheskih Nauk 171, Nr. 4 (2001): 435. http://dx.doi.org/10.3367/ufnr.0171.200104e.0435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bauer, Jarosław H. „Keldysh theory re-examined“. Journal of Physics B: Atomic, Molecular and Optical Physics 49, Nr. 14 (15.06.2016): 145601. http://dx.doi.org/10.1088/0953-4075/49/14/145601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jauho, A. P., und K. Johnsen. „Dynamical Franz-Keldysh Effect“. Physical Review Letters 76, Nr. 24 (10.06.1996): 4576–79. http://dx.doi.org/10.1103/physrevlett.76.4576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Trunin, Dmitrii A. „Comments on the adiabatic theorem“. International Journal of Modern Physics A 33, Nr. 24 (30.08.2018): 1850140. http://dx.doi.org/10.1142/s0217751x18501403.

Der volle Inhalt der Quelle
Annotation:
We consider the simplest example of a nonstationary quantum system which is quantum mechanical oscillator with varying frequency and [Formula: see text] self-interaction. We calculate loop corrections to the Keldysh, retarded/advanced propagators and vertices using Schwinger–Keldysh diagrammatic technique and show that there is no physical secular growth of the loop corrections in the cases of constant and adiabatically varying frequency. This fact corresponds to the well-known adiabatic theorem in quantum mechanics. However, in the case of nonadiabatically varying frequency we obtain strong IR corrections to the Keldysh propagator which come from the “sunset” diagrams, grow with time indefinitely and indicate energy pumping into the system. It reveals itself via the change in time of the level population and of the anomalous quantum average.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Long, Zi Jian, und Wing-Ki Liu. „Keldysh theory of strong-field ionization“. Canadian Journal of Physics 88, Nr. 4 (April 2010): 227–45. http://dx.doi.org/10.1139/p09-111.

Der volle Inhalt der Quelle
Annotation:
In this paper, we provide a detailed derivation of the strong-field ionization rates originally developed by Keldysh who introduced the strong-field approximation. Numerical results are presented to examine the saddle-point approximation, the low photoelectron energy approximation, and neglecting the interference terms, which are necessary to arrive at the simple quasistatic result, when the Keldysh parameter becomes very small.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Andreev, Aleksandr F., Petr I. Arseev, Mikhail A. Vasiliev, Aleksandr V. Gurevich, Yurii V. Kopaev, Oleg N. Krokhin, Evgenii G. Maksimov et al. „Leonid Veniaminovich Keldysh (on his 80th birthday)“. Uspekhi Fizicheskih Nauk 181, Nr. 4 (2011): 455. http://dx.doi.org/10.3367/ufnr.0181.201104q.0455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhang, Kangqun. „Applications of Erdélyi-Kober fractional integral for solving time-fractional Tricomi-Keldysh type equation“. Fractional Calculus and Applied Analysis 23, Nr. 5 (01.10.2020): 1381–400. http://dx.doi.org/10.1515/fca-2020-0068.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper we consider Cauchy problem of time-fractional Tricomi-Keldysh type equation. Based on the theory of a Erdélyi-Kober fractional integral operator, the formal solution of the inhomogeneous differential equation involving hyper-Bessel operator is presented with Mittag-Leffler function, then nonlinear equations are considered by applying Gronwall-type inequalities. At last, we establish the existence and uniqueness of L p -solution of time-fractional Tricomi-Keldysh type equation by use of Mikhlin multiplier theorem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

CHEN BAO-ZHEN. „IMPROVED KELDYSH-FAISAL-REISS THEORY“. Acta Physica Sinica 42, Nr. 2 (1993): 237. http://dx.doi.org/10.7498/aps.42.237.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Guo, Y., und H. Überall. „Franz-Keldysh effect in superlattices“. Radiation Effects and Defects in Solids 122-123, Nr. 2 (Dezember 1991): 653–63. http://dx.doi.org/10.1080/10420159108211497.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Milonni, P. W. „Shortcomings of the Keldysh approximation“. Physical Review A 38, Nr. 5 (01.09.1988): 2682–85. http://dx.doi.org/10.1103/physreva.38.2682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Feigel’man, M. V., A. I. Larkin und M. A. Skvortsov. „Keldysh action for disordered superconductors“. Physical Review B 61, Nr. 18 (01.05.2000): 12361–88. http://dx.doi.org/10.1103/physrevb.61.12361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Nordstrom, K. B., K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama und H. Sakaki. „Excitonic Dynamical Franz-Keldysh Effect“. Physical Review Letters 81, Nr. 2 (13.07.1998): 457–60. http://dx.doi.org/10.1103/physrevlett.81.457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Grishin, A. F., und I. V. Poedintseva. „Towards the Keldysh Tauberian Theorem“. Journal of Mathematical Sciences 134, Nr. 4 (April 2006): 2272–87. http://dx.doi.org/10.1007/s10958-006-0102-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bonitz, Michael, Antti‐Pekka Jauho, Michael Sadovskii und Sergei Tikhodeev. „In Memoriam Leonid V. Keldysh“. physica status solidi (b) 256, Nr. 7 (19.03.2019): 1800600. http://dx.doi.org/10.1002/pssb.201800600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Freimuth, Frank, Stefan Blügel und Yuriy Mokrousov. „Theory of unidirectional magnetoresistance and nonlinear Hall effect“. Journal of Physics: Condensed Matter 34, Nr. 5 (10.11.2021): 055301. http://dx.doi.org/10.1088/1361-648x/ac327f.

Der volle Inhalt der Quelle
Annotation:
Abstract We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response of the electric current quadratic in the applied electric field. We compare two different formalisms, namely the standard Keldysh nonequilibrium formalism and the Moyal–Keldysh formalism, to derive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical numerical results when applied to the ferromagnetic Rashba model. The UMR and the NLHE nonlinear conductivities tend to be comparable in magnitude according to our calculations. Additionally, their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The nonlinear zero-frequency response considered here is several orders of magnitude higher than the one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle approximation to literature expressions of the UMR that have been obtained within the constant relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find that the Boltzmann result does not correspond to the intraband term of the Keldysh expression. Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term that can be brought into the form of an effective intraband term due to the f-sum rule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jaiani, G. „On a Generalization of the Keldysh Theorem“. gmj 2, Nr. 3 (Juni 1995): 291–97. http://dx.doi.org/10.1515/gmj.1995.291.

Der volle Inhalt der Quelle
Annotation:
Abstract The Keldysh theorem for an elliptic equation with characteristic parabolic degeneration is generalized for the case of an elliptic equation of the second-order canonical form with order and type degeneration. The criteria under which the Dirichlet or Keldysh problems are correct are given in a one-sided neighborhood of the degeneration segment, enabling one to write the criteria in a single form. Moreover, some cases are pointed out in which it is even nessesary to give a criterion in the neighborhood because it is impossible to establish it on the segment of degeneracy of the equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Alvestad, Daniel, Rasmus Larsen und Alexander Rothkopf. „Kernel controlled real-time Complex Langevin simulation“. EPJ Web of Conferences 274 (2022): 08001. http://dx.doi.org/10.1051/epjconf/202227408001.

Der volle Inhalt der Quelle
Annotation:
This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a kernel. This allows us to simulate up to 2β on the real-time Schwinger-Keldysh contour with the 0 + 1 dimensional anharmonic oscillator using m = 1; λ = 24, which was previously unattainable using the complex Langevin equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

TANATAR, B., und V. MOLDOVEANU. „RPA APPROACH TO NON-LINEAR TRANSPORT IN QUANTUM DOTS“. International Journal of Modern Physics B 23, Nr. 20n21 (20.08.2009): 4414–21. http://dx.doi.org/10.1142/s0217979209063560.

Der volle Inhalt der Quelle
Annotation:
An accurate theoretical treatment of electron-electron interactions in mesoscopic systems is available in very few cases and approximation schemes are developed in most of the applications, especially for many-level quantum dots. Here we present transport calculations within the random-phase approximation for the Coulomb interaction using the Keldysh Green's functions formalism. We describe the quantum dot systems by a tight-binding Hamiltonian. Our method is similar to the one used by Faleev and Stockman [Phys. Rev. B 66 085318 (2002)] in their study of the equilibrium properties of a homogeneous 2D electron gas. The important extension at the formal level is that we combine the RPA and the Keldysh formalism for studying non-linear transport properties of open quantum dots. Within the Keldysh formalism the polarization operator becomes a contour-ordered quantity that should be computed either from the non-interacting Green functions of the coupled quantum dot (the so-called G0W approximation) either self-consistently (GW approximation). We performed both non-selfconsistent and self-consistent calculations and compare the results. In particular we recover the Coulomb diamonds for interacting quantum dots and we discuss the charge sensing effects in parallel quantum dots.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yuan, Minghu, Dandan Wang, Junsheng Chen, Aiping Fu, Fenghui Tian und Tianshu Chu. „Influence of pulse duration on above-threshold ionization in intensive circularly polarized laser field“. Canadian Journal of Physics 93, Nr. 1 (Januar 2015): 93–99. http://dx.doi.org/10.1139/cjp-2014-0336.

Der volle Inhalt der Quelle
Annotation:
The above-threshold ionization (ATI) process of argon in intensive circularly polarized laser field has been investigated by solving the time-dependent Schrödinger equation in length gauge with emphasis on pulse duration effect. It is shown that the influence of pulse duration is obvious on the transition between multiple-photon and tunneling ionization regimes when the Keldysh parameter is no more than 3.25. That is, photoelectron ionization by shorter pulse occurs in the tunneling regime mainly, and yet the multiple-photon absorption appears more easily with longer pulse. However, such influence disappears when the Keldysh parameter is sufficiently large and the ATI always appears in the multiple-photon ionization regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Aptekarev, Alexandr, und Nadezhda Afendikova. „Unknown autographs of academician M.V. Keldysh“. Вестник Российской академии наук 88, Nr. 12 (2018): 1153–59. http://dx.doi.org/10.31857/s086958730003195-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Banerjee, C., I. V. Fialkovsky, M. Lewkowicz, C. X. Zhang und M. A. Zubkov. „Wigner-Weyl calculus in Keldysh technique“. Journal of Computational Electronics 20, Nr. 6 (17.10.2021): 2255–83. http://dx.doi.org/10.1007/s10825-021-01775-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Shen, H., und M. Dutta. „Franz–Keldysh oscillations in modulation spectroscopy“. Journal of Applied Physics 78, Nr. 4 (15.08.1995): 2151–76. http://dx.doi.org/10.1063/1.360131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Bechler, S., M. Oehme, O. Latzel, M. Schmid, K. Kostecki, R. Koerner, M. Gollhofer, E. Kasper und J. Schulze. „Franz-Keldysh Effect in GeSn Detectors“. ECS Transactions 64, Nr. 6 (12.08.2014): 383–90. http://dx.doi.org/10.1149/06406.0383ecst.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Chen, Xingang, Yi Wang und Zhong-Zhi Xianyu. „Schwinger-Keldysh diagrammatics for primordial perturbations“. Journal of Cosmology and Astroparticle Physics 2017, Nr. 12 (05.12.2017): 006. http://dx.doi.org/10.1088/1475-7516/2017/12/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Zheltikov, Aleksei M. „Keldysh photoionization theory: through the barriers“. Uspekhi Fizicheskih Nauk 187, Nr. 11 (August 2017): 1169–204. http://dx.doi.org/10.3367/ufnr.2017.08.038198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Cavallini, A., L. Polenta, M. Rossi, T. Stoica, R. Calarco, R. J. Meijers, T. Richter und H. Lüth. „Franz−Keldysh Effect in GaN Nanowires“. Nano Letters 7, Nr. 7 (Juli 2007): 2166–70. http://dx.doi.org/10.1021/nl070954o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ansari, M., und Y. V. Nazarov. „Keldysh formalism for multiple parallel worlds“. Journal of Experimental and Theoretical Physics 122, Nr. 3 (März 2016): 389–401. http://dx.doi.org/10.1134/s1063776116030134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Shen, H., und Fred H. Pollak. „Generalized Franz-Keldysh theory of electromodulation“. Physical Review B 42, Nr. 11 (15.10.1990): 7097–102. http://dx.doi.org/10.1103/physrevb.42.7097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Citrin, D. S., und S. Hughes. „Circularly polarized dynamic Franz-Keldysh effect“. Physical Review B 60, Nr. 19 (15.11.1999): 13272–75. http://dx.doi.org/10.1103/physrevb.60.13272.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Rahmani, A., und M. A. Sadeghzadeh. „Polaritonic linear dynamics in Keldysh formalism“. Superlattices and Microstructures 100 (Dezember 2016): 842–56. http://dx.doi.org/10.1016/j.spmi.2016.10.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Dostanić, Milutin R. „The generalization of the Keldysh theorem“. Journal of Mathematical Analysis and Applications 162, Nr. 1 (November 1991): 7–12. http://dx.doi.org/10.1016/0022-247x(91)90175-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Coriasso, C., D. Campi, C. Cacciatore, C. Alibert, S. Gaillard, B. Lambert und A. Regreny. „Observation of Superlattice Franz-Keldysh Oscillations“. Europhysics Letters (EPL) 16, Nr. 6 (07.10.1991): 591–96. http://dx.doi.org/10.1209/0295-5075/16/6/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Feigel’man, M. V., A. I. Larkin und M. A. Skvortsov. „Keldysh proximity action for disordered superconductors“. Pramana 64, Nr. 6 (Juni 2005): 1039–49. http://dx.doi.org/10.1007/bf02704166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zheltikov, A. M. „Keldysh photoionization theory: through the barriers“. Physics-Uspekhi 60, Nr. 11 (30.11.2017): 1087–120. http://dx.doi.org/10.3367/ufne.2017.08.038198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Aksent'eva, M. S., und V. A. Rubakov. „In memory of Leonid Veniaminovich Keldysh“. Physics-Uspekhi 60, Nr. 11 (30.11.2017): 1065–66. http://dx.doi.org/10.3367/ufne.2017.10.038223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ehlotzky, F. „Harmonic generation in keldysh-type models“. Il Nuovo Cimento D 14, Nr. 5 (Mai 1992): 517–25. http://dx.doi.org/10.1007/bf02457041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Nordstrom, K. B., K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama und H. Sakaki. „Observation of Dynamical Franz-Keldysh Effect“. physica status solidi (b) 204, Nr. 1 (November 1997): 52–54. http://dx.doi.org/10.1002/1521-3951(199711)204:1<52::aid-pssb52>3.0.co;2-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Hansen, Wolfhard. „On the identity of Keldych solutions“. Czechoslovak Mathematical Journal 35, Nr. 4 (1985): 632–38. http://dx.doi.org/10.21136/cmj.1985.102054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Cherepanov, Dmitry A., Fedor E. Gostev, Ivan V. Shelaev, Nikolay N. Denisov und Victor A. Nadtochenko. „Monitoring the electric field in CdSe quantum dots under ultrafast interfacial electron transfer via coherent phonon dynamics“. Nanoscale 10, Nr. 47 (2018): 22409–19. http://dx.doi.org/10.1039/c8nr07644h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Zhu, Lin, Ruimin Li und Kailun Yao. „Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons“. Physical Chemistry Chemical Physics 19, Nr. 5 (2017): 4085–92. http://dx.doi.org/10.1039/c6cp07179a.

Der volle Inhalt der Quelle
Annotation:
Thermal spin transport properties of graphene and hexagonal boron nitride nanoribbon heterojunctions have been investigated using density functional theory calculations combined with the Keldysh nonequilibrium Green's function approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

MISHIMA, K., M. HAYASHI und S. H. LIN. „QUANTUM INTERFERENCE AND LASER PULSE PHASE EFFECT ON THE PHOTOIONIZATION RATES OF EXCITED HYDROGEN ATOMS IN THE TUNNELING REGION“. Journal of Theoretical and Computational Chemistry 04, Nr. 04 (Dezember 2005): 1153–63. http://dx.doi.org/10.1142/s0219633605001933.

Der volle Inhalt der Quelle
Annotation:
Using the generalized Keldysh theory, we investigate the quantum interference and the laser pulse phase effects by tunneling photoionization of an excited hydrogen atom. We assume that its initial state be a linear combination of 1s, 2s, 2p Stark-shifted atomic states. It is found that within the Keldysh approximation, quantum interference can take place among the 1s, 2s, and 2pz states, while this is not the case among 1s, 2s, 2pz and 2px, 2py, or 2px and 2py themselves. From the numerical calculations, we predict that the prominent destructive quantum interference takes place between 2s and 2pz atomic orbitals. In addition, we have found that in general, the laser pulse phase does not affect the individual photoionization rates while it does affect the quantum interference terms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Huang, Ziwen, Yunwei Lu, Anna Grassellino, Alexander Romanenko, Jens Koch und Shaojiang Zhu. „Completely Positive Map for Noisy Driven Quantum Systems Derived by Keldysh Expansion“. Quantum 7 (03.11.2023): 1158. http://dx.doi.org/10.22331/q-2023-11-03-1158.

Der volle Inhalt der Quelle
Annotation:
Accurate modeling of decoherence errors in quantum processors is crucial for analyzing and improving gate fidelities. To increase the accuracy beyond that of the Lindblad dynamical map, several generalizations have been proposed, and the exploration of simpler and more systematic frameworks is still ongoing. In this paper, we introduce a decoherence model based on the Keldysh formalism. This formalism allows us to include non-periodic drives and correlated quantum noise in our model. In addition to its wide range of applications, our method is also numerically simple, and yields a CPTP map. These features allow us to integrate the Keldysh map with quantum-optimal-control techniques. We demonstrate that this strategy generates pulses that mitigate correlated quantum noise in qubit state-transfer and gate operations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zou, Fei, Lin Zhu, Gaoying Gao, Menghao Wu und Kailun Yao. „Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS2“. Physical Chemistry Chemical Physics 18, Nr. 8 (2016): 6053–58. http://dx.doi.org/10.1039/c5cp05001d.

Der volle Inhalt der Quelle
Annotation:
The thermal transport properties of an iron-doped molybdenum disulfide system were explored theoretically using the density functional theory calculations combined with the Keldysh non-equilibrium Green's function approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kornilina, Marina Andreyevna. „Analysis of dissertation defenses in dissertation council 24.1.237.01 at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences“. Keldysh Institute Preprints, Nr. 14 (2024): 1–22. http://dx.doi.org/10.20948/prepr-2024-14.

Der volle Inhalt der Quelle
Annotation:
Statistic data was collected and analyzed for dissertation defenses carried out in dissertation council 24.1.237.01 at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences during 2010-2023.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie