Dissertationen zum Thema „K-theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "K-theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Gritschacher, Simon. „Commutative K-theory“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5d5b0e20-20ef-4eec-a032-8bcb5fe59884.
Der volle Inhalt der QuelleLevikov, Filipp. „L-theory, K-theory and involutions“. Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201918.
Der volle Inhalt der QuelleTakeda, Yuichiro. „Localization theorem in equivariant algebraic K-theory“. 京都大学 (Kyoto University), 1997. http://hdl.handle.net/2433/202419.
Der volle Inhalt der QuelleStefański, Bogdan. „String theory, dirichlet branes and K-theory“. Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621023.
Der volle Inhalt der QuelleBraun, Volker Friedrich. „K-theory and exceptional holonomy in string theory“. Doctoral thesis, [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965401650.
Der volle Inhalt der QuelleMitchener, Paul David. „K-theory of C*-categories“. Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365771.
Der volle Inhalt der QuelleZakharevich, Inna (Inna Ilana). „Scissors congruence and K-theory“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73376.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 83-84).
In this thesis we develop a version of classical scissors congruence theory from the perspective of algebraic K-theory. Classically, two polytopes in a manifold X are defined to be scissors congruent if they can be decomposed into finite sets of pairwise-congruent polytopes. We generalize this notion to an abstract problem: given a set of objects and decomposition and congruence relations between them, when are two objects in the set scissors congruent? By packaging the scissors congruence information in a Waldhausen category we construct a spectrum whose homotopy groups include information about the scissors congruence problem. We then turn our attention to generalizing constructions from the classical case to these Waldhausen categories, and find constructions for cofibers, suspensions, and products of scissors congruence problems.
by Inna Zakharevich.
Ph.D.
Cain, Christopher. „K-theory of Fermat curves“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/262483.
Der volle Inhalt der QuelleBunch, Eric. „K-Theory in categorical geometry“. Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.
Der volle Inhalt der QuelleDepartment of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Hedlund, William. „K-Theory and An-Spaces“. Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414082.
Der volle Inhalt der QuelleHahn, Rebekah D. „K(1)-local Iwasawa theory /“. Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/5736.
Der volle Inhalt der QuelleMillar, Judith Ruth. „K-theory of Azumaya algebras“. Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534610.
Der volle Inhalt der QuelleNiwa, Masahiko. „THEORY OF G-CATEGORIES TOWARD EQUIVARIANT ALGEBRAIC K-THEORY“. 京都大学 (Kyoto University), 1991. http://hdl.handle.net/2433/168801.
Der volle Inhalt der QuelleKyoto University (京都大学)
0048
新制・論文博士
理学博士
乙第7383号
論理博第1122号
新制||理||718(附属図書館)
UT51-91-C116
(主査)教授 戸田 宏, 教授 土方 弘明, 教授 丸山 正樹
学位規則第5条第2項該当
Schäfer-Nameki, Sakura. „D-branes in boundary field theory and K-theory“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620017.
Der volle Inhalt der QuellePiazza, Paolo. „K-theory and index theory on manifolds with boundary“. Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/31020.
Der volle Inhalt der QuelleZhang, Zuhong. „Lower K-theory of unitary groups“. Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486261.
Der volle Inhalt der QuelleKerz, Moritz. „Milnor K-theory of local rings“. kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2008/991/.
Der volle Inhalt der QuelleClausen, Dustin (Dustin Tate). „Arithmetic duality in algebraic K-theory“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83692.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 37-38).
Let X be a regular arithmetic curve or point (meaning a regular separated scheme of finite type over Z which is connected and of Krull dimension = 1). We define a compactly-supported variant Kc(X) of the algebraic K-theory spectrum K(X), and establish the basic functoriality of Kc. Briefly, K, behaves as if it were dual to K. Then we give this duality some grounding: for every prime t invertible on X, we define a natural l-adic pairing between Kc(X) and K(X). This pairing is of an explicit homotopy-theoretic nature, and reflects a simple relation between spheres, tori, and real vector spaces. Surprisingly, it has the following two properties: first (a consequence of work of Rezk), when one tries to compute it the e-adic logarithm inevitably appears; and second, it can be used to give a new description of the global Artin map, one which makes the Artin reciprocity law manifest.
by Dustin Clausen.
Ph.D.
Harris, Thomas. „Binary complexes and algebraic K-theory“. Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/383999/.
Der volle Inhalt der QuelleMagill, Matthew. „Topological K-theory and Bott Periodicity“. Thesis, Uppsala universitet, Algebra och geometri, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322927.
Der volle Inhalt der QuelleSia, Charmaine Jia Min. „Structures on Forms of K-Theory“. Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467390.
Der volle Inhalt der QuelleMathematics
Klippenstien, J. „Applications of the universal coefficient theorem for connective k-theory“. Thesis, University of Warwick, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371053.
Der volle Inhalt der QuelleHazrat, Roozbeh. „On K-theory of classical-like groups“. [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969899742.
Der volle Inhalt der QuelleHekmati, Pedram. „Group Extensions, Gerbes and Twisted K-theory“. Licentiate thesis, Stockholm : Teoretisk fysik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4654.
Der volle Inhalt der QuelleLopez, Jose Maria Cantarero. „Equivariant K-theory, groupoids and proper actions“. Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/14707.
Der volle Inhalt der QuelleYang, Shuhang. „Large N gauge theory and k-strings“. Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33648.
Der volle Inhalt der QuelleKreisel, Michael. „Gabor frames for quasicrystals and K-theory“. Thesis, University of Maryland, College Park, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3711683.
Der volle Inhalt der QuelleWe study the connection between Gabor frames for quasicrystals, the topology of the hull of a quasicrystal, and the K-theory of an associated twisted groupoid algebra. In particular, we construct a finitely generated projective module over this algebra, and multiwindow Gabor frames can be used to construct an idempotent representing the module in K-theory. For lattice subsets in dimension two, this allows us to prove a twisted version of Bellissard's gap labeling theorem. By viewing Gabor frames in this operator algebraic framework, we are also able to show that for certain quasicrystals it is not possible to construct a tight multiwindow Gabor frame.
Lakos, Gyula 1973. „Smooth K-theory and locally convex algebras“. Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29357.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 121-122).
In this thesis, we improve the loop linearization process from the classical article of Atiyah and Bott on Bott periodicity. The linearization process is made explicit in terms of formulae for smooth loops. Using this improvement allows us to extend K-theory (including periodicity) to a class of locally convex algebras vastly larger then the one of Banach algebras. We find various ways to represent periodicity by explicit formulae. For finite Laurent loops formulae yielding finite matrices to represent the associated Ko classes are obtained. The methods used also allow us to reinterpret some recent results of Melrose on smooth classifying spaces for K-theory. The relationship between the universal even and odd Chern characters and periodicity is investigated, giving correspondences between the various representatives in the form of family index theorems for loop groups. In the discussion Ko and the even Chern character are primarily formulated in the language of involutions. The paper also demonstrates the universality of the involution terminology with respect to vector bundles.
by Gyula Lakos.
Ph.D.
Dugger, Daniel (Daniel Keith) 1972. „A Postnikov tower for algebraic K-theory“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85300.
Der volle Inhalt der QuelleSong, Yongjin. „Hermitian algebraic K-theory and dihedral homology /“. The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487681788252481.
Der volle Inhalt der QuelleSavinien, Jean P. X. „Cohomology and K-theory of aperiodic tilings“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24732.
Der volle Inhalt der QuelleCommittee Chair: Prof. Jean Bellissard; Committee Member: Prof. Claude Schochet; Committee Member: Prof. Michael Loss; Committee Member: Prof. Stavros Garoufalidis; Committee Member: Prof. Thang Le.
Rodtes, Kijti. „The connective K theory of semidihedral groups“. Thesis, University of Sheffield, 2010. http://etheses.whiterose.ac.uk/1103/.
Der volle Inhalt der QuelleDell'Aiera, Clément. „Controlled K-theory for groupoids and applications“. Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0114/document.
Der volle Inhalt der QuelleIn their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
Dell'Aiera, Clément. „Controlled K-theory for groupoids and applications“. Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0114.
Der volle Inhalt der QuelleIn their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
Rallis, Nikolaos. „C-K Theory in Practice : C-K Theory in Practice: How can CK Theory serve as a model of reasoning for Startups’ Internationalization?“ Thesis, Linköpings universitet, Företagsekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160692.
Der volle Inhalt der QuelleJia, Bei. „D-branes and K-homology“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/32039.
Der volle Inhalt der QuelleMaster of Science
Hüttemann, Thomas. „Algebraic K-theory of non-linear projectice spaces“. [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=957056230.
Der volle Inhalt der QuelleSavin, Anton, und Boris Sternin. „Eta-invariant and Pontrjagin duality in K-theory“. Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2574/.
Der volle Inhalt der QuelleHignett, Anthony James. „Discrete module categories and operations in K-theory“. Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521994.
Der volle Inhalt der QuelleValentino, Alessandro. „K-theory, D-branes and Ramond-Ramond fields“. Thesis, Heriot-Watt University, 2008. http://hdl.handle.net/10399/2175.
Der volle Inhalt der QuelleMarkett, Simon A. „The Grayson spectral sequence for hermitian K-theory“. Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74068/.
Der volle Inhalt der QuelleThiang, Guo Chuan. „Topological phases of matter, symmetries, and K-theory“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:53b10289-8b59-46c2-a0e9-5a5fb77aa2a2.
Der volle Inhalt der QuelleSchadeck, Laurent. „On the K-theory of tame Artim stacks“. Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/85745.
Der volle Inhalt der QuelleSperber, Ron. „A comparison of assembly maps in algebraic K-theory“. Diss., Online access via UMI:, 2004. http://wwwlib.umi.com/dissertations/fullcit/3150488.
Der volle Inhalt der QuellePatronas, Dimitrios [Verfasser]. „The Artin Defect in Algebraic K-Theory / Dimitrios Patronas“. Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1058105280/34.
Der volle Inhalt der QuelleKolin, David. „k-Space image correlation spectroscopy: theory, verification, and applications“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21933.
Der volle Inhalt der QuelleCette thèse est à propos de l'utilisation et du développement de nouvelles techniques de corrélation de fluorescence afin de mesurer les dynamiques, la densité, et l'état d'agrégation de protéines marquées par fluorescence dans des cellules vivantes. Une vaste recherche de la précision de la spectroscopie temporelle par corrélations d'images (STCI) est premièrement présentée. En utilisant des simulations informatiques à balayage de laser de séries d'images de microscopie, l'effet de l'échantillon spatiotemporelle, densité de particules, le bruit, la fréquence de prises d'échantillons, et le photoblanchiment des fluorophores lors de la mesure des coefficients de transport et la densité par STCI sont examinés. C'est démontré que le photoblanchiment des fluorophores perturbent de manière significative les mesures STCI. La théorie de la spectroscopie de corrélations d'images d'espace-k (CIEk) est développée en détail. CIEk implique la transformation Fourier de chaque image dans une série d'images, et ensuite de faire la corrélation de ces transformations, dans le temps. Cette technique mesure la densité, le coefficient de diffusion, et la vélocité de macromolécules marquées fluorescentes dans une membrane de cellules. Contrairement aux techniques de corrélation espace-r, nous démontrons que CIEk peut mesurer les dynamiques précises, même en présence de complexes photoblanchiments de fluorophores et/ou "clignotement." Nous utilisons des simulations comme une preuve de principes pour démontrer que les densités et les coefficients de transport peuvent être extraits en utilisant cette technique. Nous présentons des mesures d'étalonnage avec des microsphères fluorescentes imagées sur un microscope confocal, qui mesurent la diffusion de coefficients Stokes-Einstein, et les vitesses d'écroulement qui correspondent avec les mesures de suivi de particules uniques. L'application vaste de cette technique est démontrée avec d
Strong, Mary-Jane Anne. „Additive Unstable Operations in Complex K-Theory and Cobordism“. Thesis, University of Westminster, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500535.
Der volle Inhalt der QuelleKuber, Amit Shekhar. „K-theory of theories of modules and algebraic varieties“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/ktheory-of-theories-of-modules-and-algebraic-varieties(5d4387d5-df36-455a-a09d-922d67b0827e).html.
Der volle Inhalt der QuelleMelo, S. T., R. Nest und Elmar Schrohe. „C*-structure and K-theory of Boutet de Monvel's algebra“. Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2616/.
Der volle Inhalt der QuelleNarreddy, Naga Sambu Reddy, und Tuğrul Durgun. „Clusters (k) Identification without Triangle Inequality : A newly modelled theory“. Thesis, Uppsala universitet, Institutionen för informatik och media, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183608.
Der volle Inhalt der Quelle