Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „K-theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "K-theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "K-theory"
Ausoni, Christian, und John Rognes. „Algebraic K-theory of topological K-theory“. Acta Mathematica 188, Nr. 1 (2002): 1–39. http://dx.doi.org/10.1007/bf02392794.
Der volle Inhalt der QuelleMitchell, Stephen A. „Topological K-Theory of Algebraic K-Theory Spectra“. K-Theory 21, Nr. 3 (November 2000): 229–47. http://dx.doi.org/10.1023/a:1026580718473.
Der volle Inhalt der QuelleFelisatti, Marcello. „Multiplicative K-theory and K-theory of Functors“. Mediterranean Journal of Mathematics 5, Nr. 4 (Dezember 2008): 493–99. http://dx.doi.org/10.1007/s00009-008-0163-0.
Der volle Inhalt der QuelleBouwknegt, Peter, Alan L. Carey, Varghese Mathai, Michael K. Murray und Danny Stevenson. „Twisted K-Theory and K-Theory of Bundle Gerbes“. Communications in Mathematical Physics 228, Nr. 1 (01.06.2002): 17–49. http://dx.doi.org/10.1007/s002200200646.
Der volle Inhalt der QuelleLoday, Jean-Louis. „Algebraic K-Theory and the Conjectural Leibniz K-Theory“. K-Theory 30, Nr. 2 (Oktober 2003): 105–27. http://dx.doi.org/10.1023/b:kthe.0000018382.90150.ce.
Der volle Inhalt der QuelleKobal, Damjan. „K-Theory, Hermitian K-Theory and the Karoubi Tower“. K-Theory 17, Nr. 2 (Juni 1999): 113–40. http://dx.doi.org/10.1023/a:1007799508729.
Der volle Inhalt der QuelleCharles Jones, Kevin, Youngsoo Kim, Andrea H. Mhoon, Rekha Santhanam, Barry J. Walker und Daniel R. Grayson. „The Additivity Theorem in K-Theory“. K-Theory 32, Nr. 2 (Juni 2004): 181–91. http://dx.doi.org/10.1023/b:kthe.0000037546.39459.cb.
Der volle Inhalt der QuelleCoutinho, Severino Collier, und Hvedri Inassaridze. „Algebraic K-Theory“. Mathematical Gazette 81, Nr. 490 (März 1997): 167. http://dx.doi.org/10.2307/3618817.
Der volle Inhalt der QuelleGeisser, Thomas, Lars Hesselholt, Annette Huber-Klawitter und Moritz Kerz. „Algebraic K-theory“. Oberwolfach Reports 16, Nr. 2 (03.06.2020): 1737–90. http://dx.doi.org/10.4171/owr/2019/29.
Der volle Inhalt der QuelleChowdhry, Maya. „k/not theory“. Journal of Lesbian Studies 4, Nr. 4 (Dezember 2000): 59–70. http://dx.doi.org/10.1300/j155v04n04_05.
Der volle Inhalt der QuelleDissertationen zum Thema "K-theory"
Gritschacher, Simon. „Commutative K-theory“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5d5b0e20-20ef-4eec-a032-8bcb5fe59884.
Der volle Inhalt der QuelleLevikov, Filipp. „L-theory, K-theory and involutions“. Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201918.
Der volle Inhalt der QuelleTakeda, Yuichiro. „Localization theorem in equivariant algebraic K-theory“. 京都大学 (Kyoto University), 1997. http://hdl.handle.net/2433/202419.
Der volle Inhalt der QuelleStefański, Bogdan. „String theory, dirichlet branes and K-theory“. Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621023.
Der volle Inhalt der QuelleBraun, Volker Friedrich. „K-theory and exceptional holonomy in string theory“. Doctoral thesis, [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965401650.
Der volle Inhalt der QuelleMitchener, Paul David. „K-theory of C*-categories“. Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365771.
Der volle Inhalt der QuelleZakharevich, Inna (Inna Ilana). „Scissors congruence and K-theory“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73376.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 83-84).
In this thesis we develop a version of classical scissors congruence theory from the perspective of algebraic K-theory. Classically, two polytopes in a manifold X are defined to be scissors congruent if they can be decomposed into finite sets of pairwise-congruent polytopes. We generalize this notion to an abstract problem: given a set of objects and decomposition and congruence relations between them, when are two objects in the set scissors congruent? By packaging the scissors congruence information in a Waldhausen category we construct a spectrum whose homotopy groups include information about the scissors congruence problem. We then turn our attention to generalizing constructions from the classical case to these Waldhausen categories, and find constructions for cofibers, suspensions, and products of scissors congruence problems.
by Inna Zakharevich.
Ph.D.
Cain, Christopher. „K-theory of Fermat curves“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/262483.
Der volle Inhalt der QuelleBunch, Eric. „K-Theory in categorical geometry“. Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.
Der volle Inhalt der QuelleDepartment of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Hedlund, William. „K-Theory and An-Spaces“. Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414082.
Der volle Inhalt der QuelleBücher zum Thema "K-theory"
Atiyah, Michael Francis. K-theory. Redwood City, Calif: Addison-Wesley Pub. Co., Advanced Book Program, 1989.
Den vollen Inhalt der Quelle findenSrinivas, V. Algebraic K-theory. Boston: Birkhäuser, 1991.
Den vollen Inhalt der Quelle findenInassaridze, H. Algebraic K-theory. Dordrecht: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenSrinivas, V. Algebraic K-theory. 2. Aufl. Boston: Birkhäuser, 1996.
Den vollen Inhalt der Quelle findenSrinivas, V. Algebraic K-Theory. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-0-8176-4739-1.
Der volle Inhalt der QuelleInassaridze, Hvedri. Algebraic K-Theory. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8569-9.
Der volle Inhalt der QuelleSrinivas, V. Algebraic K-Theory. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4899-6735-0.
Der volle Inhalt der QuelleInternational Meeting on K-theory (1992 : Institut de recherche mathématique avancée), Hrsg. K-theory: Strasbourg, 1992. Paris: Société mathématique de France, 1994.
Den vollen Inhalt der Quelle findenPenner, Robert. Topology and K-Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5.
Der volle Inhalt der QuelleKiechle, Hubert. Theory of K-Loops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/b83276.
Der volle Inhalt der QuelleBuchteile zum Thema "K-theory"
Abrams, Gene, Pere Ara und Mercedes Siles Molina. „K-Theory“. In Lecture Notes in Mathematics, 219–57. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7344-1_6.
Der volle Inhalt der QuelleShafarevich, Igor R. „K-theory“. In Encyclopaedia of Mathematical Sciences, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_22.
Der volle Inhalt der QuelleMukherjee, Amiya. „K-Theory“. In Atiyah-Singer Index Theorem, 1–34. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-60-6_1.
Der volle Inhalt der QuelleStrung, Karen R. „K-theory“. In Advanced Courses in Mathematics - CRM Barcelona, 175–200. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47465-2_12.
Der volle Inhalt der QuelleLevine, Marc. „K-theory“. In Mixed Motives, 357–69. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/surv/057/08.
Der volle Inhalt der QuelleAguilar, Marcelo, Samuel Gitler und Carlos Prieto. „K-Theory“. In Universitext, 289–307. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-22489-0_9.
Der volle Inhalt der QuelleHusemoller, Dale. „Relative K-Theory“. In Graduate Texts in Mathematics, 122–39. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2261-1_10.
Der volle Inhalt der QuelleMukherjee, Amiya. „Equivariant K-Theory“. In Atiyah-Singer Index Theorem, 178–99. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-60-6_7.
Der volle Inhalt der QuelleDundas, Bjørn Ian, Thomas G. Goodwillie und Randy McCarthy. „Algebraic K-Theory“. In The Local Structure of Algebraic K-Theory, 1–61. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4393-2_1.
Der volle Inhalt der QuelleFeigin, B. L., und B. L. Tsygan. „Additive K-theory“. In K-Theory, Arithmetic and Geometry, 67–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078368.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "K-theory"
D'Ambrosio, Giancarlo. „Theory of rare $K$ decays“. In 9th International Workshop on the CKM Unitarity Triangle. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.291.0061.
Der volle Inhalt der QuelleTamaki, Dai. „Twisting Segal's K-Homology Theory“. In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0007.
Der volle Inhalt der QuelleD'Ambrosio, Giancarlo. „Theory of rare K decays“. In The International Conference on B-Physics at Frontier Machines. Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.326.0027.
Der volle Inhalt der QuelleMishchenko, Alexandr S. „K-theory over C*-algebras“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-13.
Der volle Inhalt der QuelleJardine, John F. „The K–theory presheaf of spectra“. In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.151.
Der volle Inhalt der QuelleJOACHIM, MICHAEL. „UNBOUNDED FREDHOLM OPERATORS AND K-THEORY“. In Proceedings of the School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704443_0009.
Der volle Inhalt der QuelleBass, H., A. O. Kuku und C. Pedrini. „Algebraic K-Theory and its Applications“. In Workshop and Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814528474.
Der volle Inhalt der QuelleSzabo, Richard J. „D-Branes and Bivariant K-Theory“. In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0005.
Der volle Inhalt der QuelleNabeebaccus, Saad, und Roman Zwicky. „On the $ R_{K} $ theory error“. In 11th International Workshop on the CKM Unitarity Triangle. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.411.0071.
Der volle Inhalt der QuelleSATI, H. „SOME RELATIONS BETWEEN TWISTED K-THEORY AND E8 GAUGE THEORY“. In Proceedings of the 32nd Coral Gables Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701992_0049.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "K-theory"
Falco, Domenico, und Alessandro Giulini. Asymptotic Modeling of Wave Functions, Regular Curves and Riemannian K-Theory. Web of Open Science, Februar 2020. http://dx.doi.org/10.37686/qrl.v1i1.3.
Der volle Inhalt der QuelleAdams, Allan W. Strings, Branes and K-Theory from E{sub 8} Bundles in 11 Dimensions. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799922.
Der volle Inhalt der QuelleMARKOV, R. S., E. A. BURTSEVA und E. I. SHURUPOVA. THE ORIGIN OF THE STATE IN THE SOCIO-PHILOSOPHICAL PARADIGM K. LEONTIEV. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2077-1770-2021-14-1-2-29-37.
Der volle Inhalt der QuelleMuller, L., G. Yang und V. Comalino. Integrability in Constructive K-Theory mathematical model for operation algorithms of an airship anti-stealth radar. Web of Open Science, Februar 2020. http://dx.doi.org/10.37686/ser.v1i1.2.
Der volle Inhalt der QuelleMacFarlane, Andrew. 2021 medical student essay prize winner - A case of grief. Society for Academic Primary Care, Juli 2021. http://dx.doi.org/10.37361/medstudessay.2021.1.1.
Der volle Inhalt der Quelle