Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „K free integers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "K free integers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "K free integers"
Wu, Xia, und Yan Qin. „Rational Points of Elliptic Curve y2=x3+k3“. Algebra Colloquium 25, Nr. 01 (22.01.2018): 133–38. http://dx.doi.org/10.1142/s1005386718000081.
Der volle Inhalt der QuelleHaukkanen, Pentti. „Arithmetical functions associated with conjugate pairs of sets under regular convolutions“. Notes on Number Theory and Discrete Mathematics 28, Nr. 4 (24.10.2022): 656–65. http://dx.doi.org/10.7546/nntdm.2022.28.4.656-665.
Der volle Inhalt der QuelleMinh, Nguyen Quang. „A Generalisation of Maximal (k,b)-Linear-Free Sets of Integers“. Journal of Combinatorial Mathematics and Combinatorial Computing 120, Nr. 1 (30.06.2024): 315–21. http://dx.doi.org/10.61091/jcmcc120-28.
Der volle Inhalt der QuelleLiu, H. Q. „On the distribution of k-free integers“. Acta Mathematica Hungarica 144, Nr. 2 (18.10.2014): 269–84. http://dx.doi.org/10.1007/s10474-014-0454-9.
Der volle Inhalt der QuelleWlazinski, Francis. „A uniform cube-free morphism is k-power-free for all integers k ≥ 4“. RAIRO - Theoretical Informatics and Applications 51, Nr. 4 (Oktober 2017): 205–16. http://dx.doi.org/10.1051/ita/2017015.
Der volle Inhalt der QuelleCellarosi, Francesco, und Ilya Vinogradov. „Ergodic properties of $k$-free integers in number fields“. Journal of Modern Dynamics 7, Nr. 3 (2013): 461–88. http://dx.doi.org/10.3934/jmd.2013.7.461.
Der volle Inhalt der QuelleDong, D., und X. Meng. „Irrational Factor of Order k and ITS Connections With k-Free Integers“. Acta Mathematica Hungarica 144, Nr. 2 (20.06.2014): 353–66. http://dx.doi.org/10.1007/s10474-014-0420-6.
Der volle Inhalt der QuelleChoi, Dohoon, und Youngmin Lee. „Modular forms of half-integral weight on Γ0(4) with few nonvanishing coefficients modulo ℓ“. Open Mathematics 20, Nr. 1 (01.01.2022): 1320–36. http://dx.doi.org/10.1515/math-2022-0512.
Der volle Inhalt der QuelleLE BOUDEC, PIERRE. „POWER-FREE VALUES OF THE POLYNOMIAL t1⋯tr−1“. Bulletin of the Australian Mathematical Society 85, Nr. 1 (23.09.2011): 154–63. http://dx.doi.org/10.1017/s0004972711002590.
Der volle Inhalt der QuelleBenamar, Hela, Amara Chandoul und M. Mkaouar. „On the Continued Fraction Expansion of Fixed Period in Finite Fields“. Canadian Mathematical Bulletin 58, Nr. 4 (01.12.2015): 704–12. http://dx.doi.org/10.4153/cmb-2015-055-9.
Der volle Inhalt der QuelleDissertationen zum Thema "K free integers"
Powell, Kevin James. „Topics in Analytic Number Theory“. BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2084.
Der volle Inhalt der QuelleZouari, Hichem. „Les entiers friables sous contraintes digitales“. Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0255.
Der volle Inhalt der QuelleThis thesis addresses some questions related to the sum of digits function and friable integers. The first chapter is dedicated to an introduction that gathers the origins of the main topics covered in this thesis, as well as a background and the necessary notations for the rest of the work. The main results obtained during this research will also be presented. The second chapter focuses on the behaviour of the set ({ n leq x : n ext{ is } k ext{-free}, , s_q(Q(n)) equiv a pmod{m} }), where ( a in mathbb{Z} ), ( k ), and ( m ) are natural numbers greater than or equal to 2. The function ( s_q ) represents the sum of digits in base ( q ), ( k )-free integers are those not divisible by the ( k )-th power of a prime number, and ( Q ) is a polynomial of degree greater than or equal to 2. To show our main result, we evaluate exponential sums of the type(sum_{n leq x atop{ n ext{ is } k ext{-free}}} e(alpha s_q(Q(n)))), where ( alpha ) is a real number such that ((q - 1)alpha in mathbb{R} setminus mathbb{Z}). In the end, we establish an equidistribution result modulo 1. The third chapter, we focus on the distribution of the Zeckendorf sum of digits over friable integers in congruence classes. An integer is called ( y )-friable if all its prime factors are less than or equal to ( y ). We use the notation ( P(n) ) to denote the largest prime factor of ( n ), and ( S(x, y) := { n leq x : P(n) leq y } ) to denote the set of ( y )-friable integers less than or equal to ( x ). The main objective of this chapter is to evaluate the set ( { n in S(x, y) : s_varphi(n) equiv a pmod{m} } ), where ( a in mathbb{Z} ) and ( m ) is a natural number greater than or equal to 2. Here, ( s_varphi ) is the sum of digits function in the Fibonacci base. As in the second chapter, to prove the main result, we use exponential sums, and we utilize the property of decomposition of friable integers into intervals for our demonstration to evaluate the exponential sum(sum_{n in S(x, y)} e(vartheta s_varphi(n))), where ( vartheta in mathbb{R} setminus mathbb{Z} ). The fourth chapter deals with the average of sums of certain multiplicative functions over friable integers. In this chapter, our goal is to determine estimates for the following expressions: sigma_s(n) = sum_{d mid n} d^s, varphi(n) = sum_{d mid n} mu(d) n/d, and psi(n) = sum_{d mid n} mu^2(n/d) d, where ( s ) is a non-zero real number, when (n) runs over the set (S(x,y)). The last chapter presents an application of the Turán-Kubilius inequality. It is well known that this inequality deals with additive functions and has also been used to prove the Hardy-Ramanujan theorem for the additive function (omega(n)), which counts the prime divisors of the integer (n). In this chapter, we move into the space of friable integers and focus on the additive function ilde{omega}(n) = sum_{p mid n atop{s_q(p) equiv a pmod{b}}} 1, where ( a in mathbb{Z} ) and ( b geq 2 ) are integers. Firstly, we provide an estimate of ( ilde{omega}(n)) when (n) runs through the set (S(x,y)), we then use the Turán-Kubilius inequality in the space of friable integers established by Tenenbaum and de la Bretèche to present few applications
Buchteile zum Thema "K free integers"
Nathanson, Melvyn B. „Sumsets containing k-free integers“. In Number Theory, 179–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086552.
Der volle Inhalt der QuelleAxelsen, Holger Bock, und Michael Kirkedal Thomsen. „Garbage-Free Reversible Integer Multiplication with Constants of the Form 2 k ±2 l ±1“. In Reversible Computation, 171–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36315-3_14.
Der volle Inhalt der QuelleAlkan, Emre. „Number of shifted primes as k-free integers“. In Number Theory, 15–34. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110761115-002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "K free integers"
Ponciano, Vitor, und Romulo Oliveira. „Convexidade em Grafo Linha de Bipartido“. In IV Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/etc.2019.6403.
Der volle Inhalt der QuelleHajiaghayi, Mohammad Taghi, Dariusz R. Kowalski, Piotr Krysta und Jan Olkowski. „Online Sampling and Decision Making with Low Entropy“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/451.
Der volle Inhalt der QuelleTai, W. C., und I. Y. Shen. „Ground-Based Response of a Spinning, Cyclic Symmetric Rotor Assembled to a Flexible Stationary Housing via Multiple Bearings“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12776.
Der volle Inhalt der QuelleShi, Zhongming, Shanshan Hsieh, Bhargava Krishna Sreepathi, Jimeno A. Fonseca, François Maréchal und Arno Schlueter. „Coarse typological studies on urban program and density defined by various urban energy conversion technologies in Singapore“. In 24th ISUF 2017 - City and Territory in the Globalization Age. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/isuf2017.2017.5636.
Der volle Inhalt der Quelle