Auswahl der wissenschaftlichen Literatur zum Thema „Jones matrix calculus“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Jones matrix calculus" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Jones matrix calculus"

1

GENAUER, JOSH, und NEAL W. STOLTZFUS. „Explicit diagonalization of the Markov form on the Temperley–Lieb algebra“. Mathematical Proceedings of the Cambridge Philosophical Society 142, Nr. 3 (Mai 2007): 469–85. http://dx.doi.org/10.1017/s0305004106009765.

Der volle Inhalt der Quelle
Annotation:
AbstractIn a fundamental paper in 1984, Vaughan Jones developed his new polynomial invariant of knots using a Markov trace on the Temperley–Lieb algebra. Subsequently, Lickorish used the associated bilinear pairing to provided an alternative proof for the existence of the 3-manifold invariants of Witten, Reshetinkin and Turaev. A key property of this form is the non-degeneracy of this form except at the parameter values ±2cos(π/(n+1)) [7]. Ko and Smolinsky derived a recursive formula for the determinants of specific minors of Markov's form, establishing the needed non-degeneracy [6]. In this paper, we define a triangular change of basis in which the form is diagonal and explicitly compute the diagonal entries of this matrix as products of quotients of Chebyshev polynomials, corroborating the determinant computation of Ko and Smolinsky. The method of proof employs a recursive method for defining the required orthogonal basis elements in the Temperley–Lieb algebra, similar in spirit to Jones' and Wenzl's recursive formula for a family of projectors in the Temperley–Lieb algebra. We define a partial order on the non-crossing chord diagram basis and give an explicit formula for a recursive construction of an orthogonal basis, via a recursion over this partial order. Finally we relate this orthogonal basis to bases constructed using the calculus of trivalent graphs developed by Kauffman and Lins [5].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Degl'Innocenti, Egidio Landi. „The Physics of Polarization“. Proceedings of the International Astronomical Union 10, S305 (Dezember 2014): 1. http://dx.doi.org/10.1017/s1743921315004433.

Der volle Inhalt der Quelle
Annotation:
AbstractThe introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.The introductory lecture delivered at the Symposium has covered the subjects itemized above with the exclusion of Sections 10, 11, 14, 18, and 19.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kasaragod, Deepa K., Zenghai Lu, James Jacobs und Stephen J. Matcher. „Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography“. Biomedical Optics Express 3, Nr. 3 (31.01.2012): 378. http://dx.doi.org/10.1364/boe.3.000378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Alicki, Robert. „Quantum Features of Macroscopic Fields: Entropy and Dynamics“. Entropy 21, Nr. 7 (18.07.2019): 705. http://dx.doi.org/10.3390/e21070705.

Der volle Inhalt der Quelle
Annotation:
Macroscopic fields such as electromagnetic, magnetohydrodynamic, acoustic or gravitational waves are usually described by classical wave equations with possible additional damping terms and coherent sources. The aim of this paper is to develop a complete macroscopic formalism including random/thermal sources, dissipation and random scattering of waves by environment. The proposed reduced state of the field combines averaged field with the two-point correlation function called single-particle density matrix. The evolution equation for the reduced state of the field is obtained by reduction of the generalized quasi-free dynamical semigroups describing irreversible evolution of bosonic quantum field and the definition of entropy for the reduced state of the field follows from the von Neumann entropy of quantum field states. The presented formalism can be applied, for example, to superradiance phenomena and allows unifying the Mueller and Jones calculi in polarization optics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Izdebski, M., und W. Kucharczyk. „Analysis of quadratic electrooptic response of BaTiO3 crystal in ferroelectric phase“. Opto-Electronics Review 16, Nr. 1 (01.01.2008). http://dx.doi.org/10.2478/s11772-007-0038-0.

Der volle Inhalt der Quelle
Annotation:
AbstractUsing the example of BaTiO3 in a ferroelectric phase it is shown that a large difference in magnitudes of individual linear electrooptic coefficients may be a reason of additional indirect quadratic contributions that are independent of real quadratic coefficients. For some directions of the applied field and light, the indirect contributions may be even larger than the real quadratic ones. Independently of nonlinear distortions that can affect applicability of technical devices, a large difference between linear electrooptic coefficients may lead to serious problems in measurements of the real quadratic electrooptic effect. The analysis is based on the extended Jones matrix calculus applied to a Gaussian beam.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Jones matrix calculus"

1

Chakraborty, Shibalik. „Determination of Mueller matrix elements in the presence of imperfections in optical components“. ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/969.

Der volle Inhalt der Quelle
Annotation:
The Polarizer-Sample-Analyzer (PSA) arrangement with the optical components P and A rotating with a fixed speed ratio (3:1) was originally introduced to determine nine Mueller matrix elements from Fourier analysis of the output signal of a photodetector. The arrangement is modified to the P'PSAA' arrangement where P' and A' represent fixed polarizers that are added at both ends with the speed ratio of the rotating components (P and A) remaining the same as before. After determination of the partial Mueller matrix in the ideal case, azimuthal offsets and imperfection parameters are introduced in the straight-through configuration and the imperfection parameters are determined from the Fourier coefficients. Finally, the sample is reintroduced and the full Mueller matrix elements are calculated to show the deviation from the ideal case and their dependency on the offsets and imperfection parameters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Šremrová, Vendula. „3D tisk optomechanických zařízení“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444972.

Der volle Inhalt der Quelle
Annotation:
Optomechanical components are widely used in many optical experiments. This diploma thesis deals with design and manufacturing optomechanical components using 3D print technology. These are cheaper alternatives of commercial devices. In addition to 3D printed parts, minimum number of other components are used to assemble functional devices. Using simple experimental setups, the manufactured components are evaluated and compared with commercially available ones. The results show that they can be used in applications where high accuracy is not required. The second part is devoted to the design and manufacturing of a polarimeter as a mechanism combining electrical and mechanical components with 3D printed parts. The polarimeter is used to measure some properties of polarized light.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

(8713962), James Ulcickas. „LIGHT AND CHEMISTRY AT THE INTERFACE OF THEORY AND EXPERIMENT“. Thesis, 2020.

Den vollen Inhalt der Quelle finden
Annotation:
Optics are a powerful probe of chemical structure that can often be linked to theoretical predictions, providing robustness as a measurement tool. Not only do optical interactions like second harmonic generation (SHG), single and two-photon excited fluorescence (TPEF), and infrared absorption provide chemical specificity at the molecular and macromolecular scale, but the ability to image enables mapping heterogeneous behavior across complex systems such as biological tissue. This thesis will discuss nonlinear and linear optics, leveraging theoretical predictions to provide frameworks for interpreting analytical measurement. In turn, the causal mechanistic understanding provided by these frameworks will enable structurally specific quantitative tools with a special emphasis on application in biological imaging. The thesis will begin with an introduction to 2nd order nonlinear optics and the polarization analysis thereof, covering both the Jones framework for polarization analysis and the design of experiment. Novel experimental architectures aimed at reducing 1/f noise in polarization analysis will be discussed, leveraging both rapid modulation in time through electro-optic modulators (Chapter 2), as well as fixed-optic spatial modulation approaches (Chapter 3). In addition, challenges in polarization-dependent imaging within turbid systems will be addressed with the discussion of a theoretical framework to model SHG occurring from unpolarized light (Chapter 4). The application of this framework to thick tissue imaging for analysis of collagen local structure can provide a method for characterizing changes in tissue morphology associated with some common cancers (Chapter 5). In addition to discussion of nonlinear optical phenomena, a novel mechanism for electric dipole allowed fluorescence-detected circular dichroism will be introduced (Chapter 6). Tackling challenges associated with label-free chemically specific imaging, the construction of a novel infrared hyperspectral microscope for chemical classification in complex mixtures will be presented (Chapter 7). The thesis will conclude with a discussion of the inherent disadvantages in taking the traditional paradigm of modeling and measuring chemistry separately and provide the multi-agent consensus equilibrium (MACE) framework as an alternative to the classic meet-in-the-middle approach (Chapter 8). Spanning topics from pure theoretical descriptions of light-matter interaction to full experimental work, this thesis aims to unify these two fronts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Jones matrix calculus"

1

„The Jones Matrix Calculus“. In Polarized Light, Revised and Expanded. CRC Press, 2003. http://dx.doi.org/10.1201/9780203911587.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

„Polarization of Monochromatic Waves. Background of the Jones Matrix Methods. The Jones Calculus“. In Modeling and Optimization of LCD Optical Performance, 1–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118706749.ch1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Jones matrix calculus"

1

Savenkov, Sergey N., und Yevgeny A. Oberemok. „Generalized conditions for eigenpolarizations orthogonality: Jones matrix calculus“. In SPIE Defense and Security Symposium, herausgegeben von David B. Chenault und Dennis H. Goldstein. SPIE, 2008. http://dx.doi.org/10.1117/12.783958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie