Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Joint torques estimation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Joint torques estimation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Joint torques estimation"
Yousefizadeh, Shirin, und Thomas Bak. „Unknown External Force Estimation and Collision Detection for a Cooperative Robot“. Robotica 38, Nr. 9 (20.12.2019): 1665–81. http://dx.doi.org/10.1017/s0263574719001681.
Der volle Inhalt der QuelleImamura, Yumeko, Ko Ayusawa, Eiichi Yoshida und Takayuki Tanaka. „Evaluation Framework for Passive Assistive Device Based on Humanoid Experiments“. International Journal of Humanoid Robotics 15, Nr. 03 (Juni 2018): 1750026. http://dx.doi.org/10.1142/s0219843617500268.
Der volle Inhalt der QuelleLam, Shui Kan, und Ivan Vujaklija. „Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study“. Sensors 21, Nr. 19 (02.10.2021): 6597. http://dx.doi.org/10.3390/s21196597.
Der volle Inhalt der QuelleKuo, A. D. „A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations“. Journal of Biomechanical Engineering 120, Nr. 1 (01.02.1998): 148–59. http://dx.doi.org/10.1115/1.2834295.
Der volle Inhalt der QuelleLatella, Claudia, Silvio Traversaro, Diego Ferigo, Yeshasvi Tirupachuri, Lorenzo Rapetti, Francisco Javier Andrade Chavez, Francesco Nori und Daniele Pucci. „Simultaneous Floating-Base Estimation of Human Kinematics and Joint Torques“. Sensors 19, Nr. 12 (21.06.2019): 2794. http://dx.doi.org/10.3390/s19122794.
Der volle Inhalt der QuellePetró, Bálint, und Rita M. Kiss. „Validation of the Estimated Torques of an Open-chain Kinematic Model of the Human Body“. Periodica Polytechnica Mechanical Engineering 66, Nr. 2 (22.03.2022): 175–82. http://dx.doi.org/10.3311/ppme.19920.
Der volle Inhalt der QuelleAjayi, Michael Oluwatosin, Karim Djouani und Yskandar Hamam. „Bounded Control of an Actuated Lower-Limb Exoskeleton“. Journal of Robotics 2017 (2017): 1–20. http://dx.doi.org/10.1155/2017/2423643.
Der volle Inhalt der QuelleHaraguchi, Naoto, und Kazunori Hase. „Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques“. Sensors 24, Nr. 9 (27.04.2024): 2792. http://dx.doi.org/10.3390/s24092792.
Der volle Inhalt der QuelleMuhammad Isa, Munawwarah Solihah, Nurhidayah Omar, Mohammad Shahril Salim, Saidatul Ardeenawatie Awang und Suhizaz Sudin. „Dynamic Modelling of the Spine for the Estimation of Vertebral Joint Torques using Gordon’s Method“. Journal of Advanced Research in Applied Mechanics 125, Nr. 1 (02.10.2024): 42–57. http://dx.doi.org/10.37934/aram.125.1.4257.
Der volle Inhalt der QuelleLim, T. G., H. S. Cho und W. K. Chung. „A parameter identification method for robot dynamic models using a balancing mechanism“. Robotica 7, Nr. 4 (Oktober 1989): 327–37. http://dx.doi.org/10.1017/s026357470000672x.
Der volle Inhalt der QuelleDissertationen zum Thema "Joint torques estimation"
Ouadoudi, Belabzioui Hasnaa. „Contributions to the in-situ biomechanical and physical ergonomic analysis of workstations using machine learning and deep learning techniques“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENE005.
Der volle Inhalt der QuelleAssessing the risk of musculoskeletal disorders in industrial environments is a challenging task, given the complexity of modern manufacturing processes. These environments include various factors influencing operator activity, such as organizational, managerial and environmental elements, as well as the pace of work. Assessing the physical constraints to which operators are subjected is crucial to preventing these disorders. Although many systems currently monitor operator movements and assess postural constraints to provide an overview of physical activity, they often fail to analyze the physical forces experienced or generated by the operator. Consequently, it is essential to quantify these forces in order to identify effort-related physical risk factors. However, conventional measurement methods are often complex, invasive and impractical in industrial environments. This thesis addresses these challenges by evaluating learning approaches for estimating physical stresses without resorting to invasive measurements, which is fundamental to improving ergonomic tools and practices. We began by comparing the accuracy and robustness of computer vision-based measurement systems for RULA assessment, focusing particularly on on-site ergonomic evaluations. Our analysis focused primarily on the evaluation of computer vision-based systems, including those with one or more cameras, using RGB or depth images, and systems that rely solely on visual data or incorporate wearable sensors (hybrid systems). Next, we developed and evaluated several learning architectures designed to emulate the inverse dynamics step in motion analysis. These predict joint torques from the operator’s skeletal data and the weight and mass of the load carried, thus offering a new alternative to classical inverse dynamics methods. Finally, we examined the generalizability of deep learningbased tools, such as OpenCap, in industrial tasks. Using fine-tuning - a common technique in deep learning for adapting models to new data sets with minimal samples - we sought to adapt OpenCap’s learning models to a new type of motion and a new set of markers
Herrmann, Christine. „Estimating Joint Torques on a Biodex System 3 Dynamometer“. Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/43529.
Der volle Inhalt der QuellePreviously proposed methods are then compared to the proposed method in isometric and isokinetic exertions. The comparison to a known moment concluded that the results for the isometric exertion are accurate for the proposed method. If the torque measurements from the dynamometer are independent of the velocity, as reported by the manufacturer, the validation of the proposed method for isometric testing holds true for isokinetic as well. The results from isokinetic testing show reasonable results for determining the resultant joint moments.
The proposed method can be simplified for clinical or experimental testing. If inertial and acceleration moments are not of concern, than using the propsed gravitational correction will account for the COM (Center of Mass). No additional measurements of the limb segement and dynamometer attachment are needed. The proposed method is recommended for Biodex System 3 isokinetic dynamometer correction in obtaining resultant joint moments at the knee, ankle, and hip.
Master of Science
Liu, Pu. „Effect of Joint Angle on EMG-Torque Model During Constant-Posture, Quasi-Constant-Torque Contractions“. Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/376.
Der volle Inhalt der QuelleRuan, Tian-You, und 阮天佑. „Isotonic elbow joint torques estimation from surface EMG signal using an artificial neural network model“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/09015951867088665100.
Der volle Inhalt der Quelle國立中央大學
機械工程研究所
96
The long term goal of this research is to develop the highly manipulated and accessible device. Until now, there are many countries in the world have started to research the exoskeleton system which will facilitate the daily activities of the disables. This device can be used in the military in the future to reduce the burden of soldiers and improve the operational capability. From medical perspective, the system can also assist physical disabled patients by accessing the feeble electromyographic signal data to support their physical operations, autonomous actions and improve their quality of daily activities. The electromyographic signal data measured from the contraction of the joint and muscle is used as the main parameter for estimate the joint torque. Considering the relation between the muscle strength result from the contractions of the triceps and biceps and the measured electromyogrphic signal is nonlinear, plus the muscle fiber length and the muscle contracted velocity also affect the elbow torque. Therefore, this research will use the electromyographic signal data, joint degree, and joint angular velocity as the input parameter, substitute the training steps to evaluated the weighting value of the backpropagation neural network to precisely estimate the joint torque.
Bücher zum Thema "Joint torques estimation"
Estimation of internal consistency and stability reliability using isokinetic segmental curve analysis. 1990.
Den vollen Inhalt der Quelle findenEstimation of internal consistency and stability reliability using isokinetic segmental curve analysis. 1988.
Den vollen Inhalt der Quelle findenEstimation of internal consistency and stability reliability using isokinetic segmental curve analysis. 1990.
Den vollen Inhalt der Quelle findenEstimation of internal consistency and stability reliability using isokinetic segmental curve analysis. 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Joint torques estimation"
Messaoui, Ali Zakaria, Mohamed Amine Alouane, Mohamed Guiatni und Fazia Sbargoud. „Continuous Joint Movements and Torques Estimation Using an Optimized State-Space EMG Model“. In Lecture Notes in Electrical Engineering, 91–99. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0045-5_9.
Der volle Inhalt der QuelleBordron, Olivier, Clément Huneau, Éric Le Carpentier und Yannick Aoustin. „Human Squat Motion: Joint Torques Estimation with a 3D Model and a Sagittal Model“. In Mechanisms and Machine Science, 247–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58104-6_28.
Der volle Inhalt der QuelleRamachandra, K., und Sourav Rakshit. „Estimation of Internal Joint Forces and Resisting Torques for Impact of Walking Robot Model“. In Lecture Notes in Mechanical Engineering, 559–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3716-3_45.
Der volle Inhalt der QuelleOuadoudi Belabzioui, Hasnaa, Charles Pontonnier, Georges Dumont, Pierre Plantard und Franck Multon. „Estimation of Upper-Limb Joint Torques in Static and Dynamic Phases for Lifting Tasks“. In Advances in Digital Human Modeling, 71–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37848-5_8.
Der volle Inhalt der QuelleWang, P. R., Y. H. Chiu, M. S. Tsai und K. C. Chung. „Estimation and Evaluation of Upper Limb Endpoint Stiffness and Joint Torques for Post-stroke Rehabilitation“. In IFMBE Proceedings, 44–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03889-1_12.
Der volle Inhalt der QuelleWang, Zhi-qiang, Yu-kun Ren und Hong-yuan Jiang. „A Mathematical Model of the Knee Joint for Estimation of Forces and Torques During Standing-up“. In Lecture Notes in Electrical Engineering, 21–28. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7618-0_3.
Der volle Inhalt der QuelleLiu, Xing, Fei Zhao, Baolin Liu und Xuesong Mei. „Multi-point Interaction Force Estimation for Robot Manipulators with Flexible Joints Using Joint Torque Sensors“. In Intelligent Robotics and Applications, 499–508. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27535-8_45.
Der volle Inhalt der QuelleDing, Zhongyi, Jianmin Li und Lizhi Pan. „Comparing of Electromyography and Ultrasound for Estimation of Joint Angle and Torque“. In Intelligent Robotics and Applications, 257–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6495-6_22.
Der volle Inhalt der QuelleZhou, Weigang, Qiang Hua, Chao Cheng, Xingyu Chen, Yunchang Yao, Lingyu Kong, Anhuan Xie, Shiqiang Zhu und Jianjun Gu. „Joint Torque and Ground Reaction Force Estimation for a One-Legged Hopping Robot“. In Intelligent Robotics and Applications, 529–41. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6495-6_45.
Der volle Inhalt der QuelleKnežević, Nikola, Maja Trumić, Kosta Jovanović und Adriano Fagiolini. „Input-Observer-Based Estimation of the External Torque for Single-Link Flexible-Joint Robots“. In Advances in Service and Industrial Robotics, 97–105. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32606-6_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Joint torques estimation"
Bodo, Giulia, Christian Vassallo, Luca De Guglielmo und Matteo Laffranchi. „Improving SEA Joint Torque Sensing for Enhanced Torque Estimation in Human-Machine Interaction“. In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 1295–302. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711809.
Der volle Inhalt der QuelleZhang, Haocheng, Asta Kizyte und Ruoli Wang. „Enhancing Dynamic Ankle Joint Torque Estimation Through Combined Data Augmentation Techniques“. In 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 198–203. IEEE, 2024. http://dx.doi.org/10.1109/biorob60516.2024.10719753.
Der volle Inhalt der QuelleTahmid, Shadman, Josep Maria Font-Llagunes und James Yang. „Upper Extremity Joint Torque Estimation Through an EMG-Driven Model“. In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89952.
Der volle Inhalt der QuelleTraversaro, Silvio, Andrea Del Prete, Serena Ivaldi und Francesco Nori. „Inertial parameters identification and joint torques estimation with proximal force/torque sensing“. In 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015. http://dx.doi.org/10.1109/icra.2015.7139476.
Der volle Inhalt der QuelleGarofalo, Gianluca, Nico Mansfeld, Julius Jankowski und Christian Ott. „Sliding Mode Momentum Observers for Estimation of External Torques and Joint Acceleration“. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8793529.
Der volle Inhalt der QuelleO'Sullivan, Patricia, Matteo Menolotto, Brendan O'Flynn und Dimitrios Sokratis Komaris. „Estimation of Maximum Shoulder and Elbow Joint Torques Based on Demographics and Anthropometrics“. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9870906.
Der volle Inhalt der QuelleFerlibas, Mehmet, und Reza Ghabcheloo. „Load weight estimation on an excavator in static and dynamic motions“. In SICFP’21 The 17:th Scandinavian International Conference on Fluid Power. Linköping University Electronic Press, 2021. http://dx.doi.org/10.3384/ecp182p90.
Der volle Inhalt der QuelleTahamipour-Z., S. Mohammad, Iman Kardan, Hadi Kalani und Alireza Akbarzadeh. „A PSO-MLPANN Hybrid Approach for Estimation of Human Joint Torques from sEMG Signals“. In 2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS). IEEE, 2020. http://dx.doi.org/10.1109/cfis49607.2020.9238724.
Der volle Inhalt der QuelleRoveda, Loris, Daniele Riva, Giuseppe Bucca und Dario Piga. „External Joint Torques Estimation for a Position-Controlled Manipulator Employing an Extended Kalman Filter“. In 2021 18th International Conference on Ubiquitous Robots (UR). IEEE, 2021. http://dx.doi.org/10.1109/ur52253.2021.9494674.
Der volle Inhalt der QuelleBueno, D. R., und L. Montano. „An optimized model for estimation of muscle contribution and human joint torques from sEMG information“. In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6346686.
Der volle Inhalt der Quelle