Auswahl der wissenschaftlichen Literatur zum Thema „Jets Fluid dynamics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Jets Fluid dynamics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Jets Fluid dynamics":

1

NORMAN, MICHAEL L. „Fluid Dynamics of Astrophysical Jets“. Annals of the New York Academy of Sciences 617, Nr. 1 Nonlinear Ast (Dezember 1990): 217–33. http://dx.doi.org/10.1111/j.1749-6632.1990.tb37807.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

ESEN, OĞUL, und HASAN GÜMRAL. „LIFTS, JETS AND REDUCED DYNAMICS“. International Journal of Geometric Methods in Modern Physics 08, Nr. 02 (März 2011): 331–44. http://dx.doi.org/10.1142/s0219887811005166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We show that complete cotangent lifts of vector fields, their decomposition into vertical representative and holonomic part provide a geometrical framework underlying Eulerian equations of continuum mechanics. We discuss Euler equations for ideal incompressible fluid and momentum-Vlasov equations of plasma dynamics in connection with the lifts of divergence-free and Hamiltonian vector fields, respectively. As a further application, we obtain kinetic equations of particles moving with the flow of contact vector fields both from Lie–Poisson reductions and with the techniques of present framework.
3

Beutner, Thomas, und Christopher Rumsey. „Introduction: Computational Fluid Dynamics Validation for Synthetic Jets“. AIAA Journal 44, Nr. 2 (Februar 2006): 193. http://dx.doi.org/10.2514/1.22547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

López-Arias, T., L. M. Gratton, G. Zendri und S. Oss. „Using jets of air to teach fluid dynamics“. Physics Education 46, Nr. 4 (29.06.2011): 373–75. http://dx.doi.org/10.1088/0031-9120/46/4/f02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ramos, J. I. „Fluid dynamics of slender, thin, annular liquid jets“. International Journal for Numerical Methods in Fluids 21, Nr. 9 (15.11.1995): 735–61. http://dx.doi.org/10.1002/fld.1650210904.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Murzabaeb, M. T., und A. L. Yarin. „Dynamics of sprinkler jets“. Fluid Dynamics 20, Nr. 5 (1986): 715–22. http://dx.doi.org/10.1007/bf01050084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

HERNÁNDEZ C., I., F. A. ACOSTA G., A. H. CASTILLEJOS E. und J. I. MINCHACA M. „The Fluid Dynamics of Secondary Cooling Air-Mist Jets“. Metallurgical and Materials Transactions B 39, Nr. 5 (Oktober 2008): 746–63. http://dx.doi.org/10.1007/s11663-008-9179-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mitrovic, J., und A. Ricoeur. „Fluid dynamics and condensation-heating of capillary liquid jets“. International Journal of Heat and Mass Transfer 38, Nr. 8 (Mai 1995): 1483–94. http://dx.doi.org/10.1016/0017-9310(94)00258-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Miller, Steven A. E., Jérémy Veltin, Philip J. Morris und Dennis K. McLaughlin. „Assessment of Computational Fluid Dynamics for Supersonic Shock Containing Jets“. AIAA Journal 47, Nr. 11 (November 2009): 2738–46. http://dx.doi.org/10.2514/1.44336.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Milanovic, Ivana M., und K. B. M. Q. Zaman. „Fluid Dynamics of Highly Pitched and Yawed Jets in Crossflow“. AIAA Journal 42, Nr. 5 (Mai 2004): 874–82. http://dx.doi.org/10.2514/1.2924.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Jets Fluid dynamics":

1

Oren, Liran. „Fluid dynamics of pulsating jets and voice“. University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353155395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lai, Chung-kei Chris, und 黎頌基. „Mixing of inclined dense jets“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B4423661X.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Smith, Barton Lee. „Synthetic jets and their interaction with adjacent jets“. Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18889.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Or, Chun-ming, und 柯雋銘. „Flow development in the initial region of a submerged round jet in a moving environment“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shen, Jihua. „Formation and characteristics of sprays from annular viscous liquid jet breakup“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32723.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davis, Staci Ann. „The manipulation of large- and small-scale flow structures in single and coaxial jets using synthetic jet actuators“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cutler, Philip Robert Edward. „On the structure and mixing of a jet in crossflow : Ph.D. thesis“. Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phc9895.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hunter, Hanif. „Formation and break up of microscale liquid jets“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Soo, Jin Hou. „Direct and large-eddy simulations of three-dimensional jets using the lattice Boltzmann method“. Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/12013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Larry. „Forcing of globally unstable jets and flames“. Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/242373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In the analysis of thermoacoustic systems, a flame is usually characterised by the way its heat release responds to acoustic forcing. This response depends on the hydrodynamic stability of the flame. Some flames, such as a premixed bunsen flame, are hydrodynamically globally stable. They respond only at the forcing frequency. Other flames, such as a jet diffusion flame, are hydrodynamically globally unstable. They oscillate at their own natural frequencies and are often assumed to be insensitive to low-amplitude forcing at other frequencies. If a hydrodynamically globally unstable flame really is insensitive to forcing at other frequencies, then it should be possible to weaken thermoacoustic oscillations by detuning the frequency of the natural hydrodynamic mode from that of the natural acoustic modes. This would be very beneficial for industrial combustors. In this thesis, that assumption of insensitivity to forcing is tested experimentally. This is done by acoustically forcing two different self-excited flows: a non-reacting jet and a reacting jet. Both jets have regions of absolute instability at their base and this causes them to exhibit varicose oscillations at discrete natural frequencies. The forcing is applied around these frequencies, at varying amplitudes, and the response examined over a range of frequencies (not just at the forcing frequency). The overall system is then modelled as a forced van der Pol oscillator. The results show that, contrary to some expectations, a hydrodynamically self-excited jet oscillating at one frequency is sensitive to forcing at other frequencies. When forced at low amplitudes, the jet responds at both frequencies as well as at several nearby frequencies, and there is beating, indicating quasi-periodicity. When forced at high amplitudes, however, it locks into the forcing. The critical forcing amplitude required for lock-in increases with the deviation of the forcing frequency from the natural frequency. This increase is linear, indicating a Hopf bifurcation to a global mode. The lock-in curve has a characteristic ∨ shape, but with two subtle asymmetries about the natural frequency. The first asymmetry concerns the forcing amplitude required for lock-in. In the non-reacting jet, higher amplitudes are required when the forcing frequency is above the natural frequency. In the reacting jet, lower amplitudes are required when the forcing frequency is above the natural frequency. The second asymmetry concerns the broadband response at lock-in. In the non-reacting jet, this response is always weaker than the unforced response, regardless of whether the forcing frequency is above or below the natural frequency. In the reacting jet, that response is weaker than the unforced response when the forcing frequency is above the natural frequency, but is stronger than it when the forcing frequency is below the natural frequency. In the reacting jet, weakening the global instability – by adding coflow or by diluting the fuel mixture – causes the flame to lock in at lower forcing amplitudes. This finding, however, cannot be detected in the flame describing function. That is because the flame describing function captures the response at only the forcing frequency and ignores all other frequencies, most notably those arising from the natural mode and from its interactions with the forcing. Nevertheless, the flame describing function does show a rise in gain below the natural frequency and a drop above it, consistent with the broadband response. Many of these features can be predicted by the forced van der Pol oscillator. They include (i) the coexistence of the natural and forcing frequencies before lock-in; (ii) the presence of multiple spectral peaks around these competing frequencies, indicating quasi-periodicity; (iii)the occurrence of lock-in above a critical forcing amplitude; (iv) the ∨-shaped lock-in curve; and (v) the reduced broadband response at lock-in. There are, however, some features that cannot be predicted. They include (i) the asymmetry of the forcing amplitude required for lock-in, found in both jets; (ii) the asymmetry of the response at lock-in, found in the reacting jet; and (iii) the interactions between the fundamental and harmonics of both the natural and forcing frequencies, found in both jets.

Bücher zum Thema "Jets Fluid dynamics":

1

A, Davies P., Valente Neves M. J, North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Research Workshop on Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes (1993 : Viana do Castelo, Portugal), Hrsg. Recent research advances in the fluid mechanics of turbulent jets and plumes. Dordrecht: Kluwer Academic, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yarin, Alexander L. Free liquid jets and films: Hydrodynamics and rheology. New York: Longman Scientific & Technical, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lin, S. P. Breakup of liquid sheets and jets. [S.l.]: Cambridge Univ Press, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jian-Shun, Shuen, Faeth G. M und United States. National Aeronautics and Space Administration., Hrsg. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

United States. National Aeronautics and Space Administration., Hrsg. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jian-Shun, Shuen, Faeth G. M und United States. National Aeronautics and Space Administration., Hrsg. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

United States. National Aeronautics and Space Administration., Hrsg. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yarin, Alexander L. Free liquid jets and films: Hydrodynamics and rheology. Harlow: Longman Scientific & Technical, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Center, Langley Research, Hrsg. Analytical description of the breakup of liquid jets in air. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

United States. National Aeronautics and Space Administration., Hrsg. Nonlinear interactions in mixing layers and compressible heated round jets. [Washington, DC: National Aeronautics and Space Administration, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Jets Fluid dynamics":

1

Özsoy, Emin. „Jets and Plumes“. In Geophysical Fluid Dynamics II, 227–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74934-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Meier, G. E. A., S. Loose und B. Stasicki. „Unsteady Liquid Jets“. In In Fascination of Fluid Dynamics, 207–16. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4986-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Grinstein, F. F. „Dynamics of Countercurrent Square Jets“. In Fluid Mechanics and Its Applications, 151–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5118-4_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jiang, Zonglin, und Kazuyoshi Takayama. „Numerical Simulations of Shock/ Vortex Interaction in Non-Circular Jets“. In Computational Fluid Dynamics 2000, 177–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shur, Mikhail L., Andrey V. Garbaruk, Sergey V. Kravchenko, Philippe R. Spalart und Mikhail Kh Strelets. „LES-Based Numerical System for Noise Prediction in Complex Jets“. In Computational Fluid Dynamics 2010, 163–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Patel, Sanjay, und Dimitris Drikakis. „Flux Limiting Schemes for Implicit Large Eddy Simulation of Synthetic Jets“. In Computational Fluid Dynamics 2006, 439–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92779-2_68.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cheprasov, S. A., D. A. Lyubimov, A. N. Secundov, K. Ya Yakubovsky und S. F. Birch. „Computational Modeling of the Flow and Noise for 3-D Exhaust Turbulent Jets“. In Computational Fluid Dynamics 2010, 903–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Creusé, Emmanuel, André Giovannini und Iraj Mortazavi. „Active Control of Transitional Channel Flows with Pulsed and Synthetic Jets Using Vortex Methods“. In Computational Fluid Dynamics 2008, 329–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

New, T. H., D. Tsovolos und E. Tsioli. „Dynamics of Jets Issuing from Trailing-Edge Modified Nozzles“. In Fluid Mechanics and Its Applications, 145–89. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-396-5_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Morgan, P. L., M. Kirkpatrick und S. W. Armfield. „A Comparison of 2-D and 3-D Solutions for Incompressible Bifurcating Jets in Stratified Environments“. In Computational Fluid Dynamics 2002, 293–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_42.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Jets Fluid dynamics":

1

Hammond, D., D. Lim und L. Redekopp. „Aerodynamic thrust vectoring of jets“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mallinson, S., G. Hong und J. Reizes. „Some characteristics of synthetic jets“. In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Panda, J. „Measurement of shock oscillation in underexpanded supersonic jets“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chigier, Norman. „Breakup of liquid sheets and jets“. In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3640.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Stanley, S., S. Sarkar, S. Stanley und S. Sarkar. „Simulations of spatially developing plane jets“. In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Reichert, R., S. Biringen, R. Reichert und S. Biringen. „Numerical simulation of compressible plane jets“. In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1924.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nagib, H. M., R. E. Drubka und P. R. Reisenthel. „The Dynamics of Turbulent Jets“. In 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

SHERIF, S., und R. PLETCHER. „Jet-wake thermal characteristics of heated turbulent jets in cross flow“. In 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3725.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wernz, S., H. Fasel, S. Wernz und H. Fasel. „Numerical investigation of forced transitional wall jets“. In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

McManus, Keith, Hartmut Legner und Steven Davis. „Pulsed vortex generator jets for active control of flow separation“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2218.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Jets Fluid dynamics":

1

Wurtzler, Kenneth, Amid Ansari und Don Kinsey. Computational Fluid Dynamic Analysis of a Single-Engine Business Jet. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1996. http://dx.doi.org/10.21236/ada332966.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sahu, Jubaraj, und Karen R. Heavey. Computational Fluid Dynamics Modeling of a 40-mm Grenade with and Without Jet Flow. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mezic, Igor. Dynamics and Control of Instabilities and Mixing in Complex Fluid Flows; Applications to Jet Engines. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada389184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie