Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Java bytecode“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Java bytecode" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Java bytecode"
Gal, Andreas, Christian W. Probst und Michael Franz. „Integrated Java Bytecode Verification“. Electronic Notes in Theoretical Computer Science 131 (Mai 2005): 27–38. http://dx.doi.org/10.1016/j.entcs.2005.01.020.
Der volle Inhalt der QuelleKim, Ki-Tae, Je-Min Kim und Weon-Hee Yoo. „Implementation of Java Bytecode Framework“. Journal of the Korea Contents Association 10, Nr. 3 (28.03.2010): 122–31. http://dx.doi.org/10.5392/jkca.2010.10.3.122.
Der volle Inhalt der QuelleReynolds, Mark C. „Modeling the Java Bytecode Verifier“. Science of Computer Programming 78, Nr. 3 (März 2013): 327–42. http://dx.doi.org/10.1016/j.scico.2011.03.008.
Der volle Inhalt der QuelleBertelsen, Peter. „Dynamic semantics of Java bytecode“. Future Generation Computer Systems 16, Nr. 7 (Mai 2000): 841–50. http://dx.doi.org/10.1016/s0167-739x(99)00094-1.
Der volle Inhalt der QuelleCook, J. J. „Reverse Execution of Java Bytecode“. Computer Journal 45, Nr. 6 (01.06.2002): 608–19. http://dx.doi.org/10.1093/comjnl/45.6.608.
Der volle Inhalt der QuelleZhao, Jian-jun. „Static analysis of Java bytecode“. Wuhan University Journal of Natural Sciences 6, Nr. 1-2 (März 2001): 383–90. http://dx.doi.org/10.1007/bf03160273.
Der volle Inhalt der QuelleDobravec, Tomaž. „JAVA BYTECODE INSTRUCTION USAGE COUNTING WITH ALGATOR“. Acta Electrotechnica et Informatica 18, Nr. 4 (05.01.2018): 17–25. http://dx.doi.org/10.15546/aeei-2018-0028.
Der volle Inhalt der QuelleWang, Tao, und Abhik Roychoudhury. „Dynamic slicing on Java bytecode traces“. ACM Transactions on Programming Languages and Systems 30, Nr. 2 (März 2008): 1–49. http://dx.doi.org/10.1145/1330017.1330021.
Der volle Inhalt der QuelleChan, Jien-Tsai, und Wuu Yang. „Advanced obfuscation techniques for Java bytecode“. Journal of Systems and Software 71, Nr. 1-2 (April 2004): 1–10. http://dx.doi.org/10.1016/s0164-1212(02)00066-3.
Der volle Inhalt der QuelleGhosh, Sudipto, und John L. Kelly. „Bytecode fault injection for Java software“. Journal of Systems and Software 81, Nr. 11 (November 2008): 2034–43. http://dx.doi.org/10.1016/j.jss.2008.02.047.
Der volle Inhalt der QuelleDissertationen zum Thema "Java bytecode"
Batchelder, Michael Robert. „Java bytecode obfuscation“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18300.
Der volle Inhalt der QuelleLes programmes écrits pour l'exécution d'ordinateur seront toujours susceptibles au vol d'information. Cette information peut inclure des algorithmes de marque de commerce, des données incluses dans le programme, ou même des données concernant les accès de programme. Suivant les avancées technologiques, les informaticiens construisent des outils de plus en plus puissants pour l'ingénierie inverse telle que le décompilateur. Le langage de programmation de Java est particulièrement ouvert aux attaques de l'ingénierie inverse en raison de son format binaire bien défini, ouvert, et portatif. Nous recherches portent sur un domaine permettant de mieux sécuriser fixer la propriété intellectuelle des programmes en Java; obscurcissement. L'obscurcissement d'un programme implique de transformer le code du programme en une représentation plus complexe mais sémantiquement équivalente. Ceci peut inclure l'addition de l'écoulement embrouillant de commande, de la supression de certaines informations incluses dans les programmes dont l'exécution n'est pas spécifiquement exigée, ou de la dissimulation des données. Excepté les techniques cryptologique s, l'obscurcissement est l'une des seules techniques disponibles. Même si beaucoup de stratégies de l'obscurissment sont finalement réversibles, il gêne sérieusement ceux qui essayent de voler l'information en augmentant la durée de calcul et la puissance exigées par les logicels d'ingénierie inverse et augmente considérablement la complexité de n'importe quel code source récupere par cette technique. Dans cette thèse nous présentons un certain nombre de transformations d'obscurcissement mises en application dans un outil automatique que nous appelons le Java Bytecode Obfuscator (JBCO). Nous présentons des mesures empiriques des coûts d'exécution de ces transformations en termes de vitesse d'exécution et taille de programme. Des mesures de complexité qui mesurent l'efficacité des obscurc
Klein, Gerwin. „Verified Java bytecode verification“. [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967128749.
Der volle Inhalt der QuelleShah, Rahul Arvind. „Vulnerability assessment of Java bytecode“. Auburn, Ala., 2005. http://repo.lib.auburn.edu/Send%2012-16-07/SHAH_RAHUL_44.pdf.
Der volle Inhalt der QuelleOchani, Vidit. „Java bytecode to Pilar translator“. Kansas State University, 2013. http://hdl.handle.net/2097/16987.
Der volle Inhalt der QuelleDepartment of Computing and Information Sciences
Robby
Software technology is the pivot around which all modern industries revolve. It is not surprising that industries of diverse nature such as finance, business, engineering, medicine, defense, etc. have assimilated sophisticated software in every step of functioning. Subsequently, with larger reach of application, software technology has evolved intricately; thereby thwarting the desirable testing of software. Companies are investing millions of dollars in manual and automated testing, however, software bugs continue to persist. It is well known that even a trivial bug can ultimately cost the company millions of dollars. Therefore, we need smarter tools to help eliminate bugs. Sireum is a research project to develop a software analysis platform that incorporates various tools and techniques. Symbolic execution, model checking, deductive reasoning and control flow graph are few examples of the aforementioned techniques. The Sireum platform is based on previous projects like the Indus static analysis framework, the Bogor model checking framework and the Bandera Java model checker. It uses the Pilar language as intermediate representation. Any language which can be translated to Pilar can be analyzed by Sireum. There exists translator for Spark - a verifiable subset of Ada for building high-integrity systems. In this report, we are presenting one such translator for Java Bytecode - A frontend which can generate Pilar from Java intermediate representation. The translator emulates the working of the Java Virtual Machine(JVM), by simulating a stack-based virtual machine. It will help us analyse JVM based softwares, such as, mobile applications for Android. We also evaluate and report statistics on the efficiency and speed of translation.
Doyon, Stéphane. „On the security of Java, the Java bytecode verifier“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0004/MQ41890.pdf.
Der volle Inhalt der QuelleVallee-Rai, Raja. „Soot : a java bytecode optimization framework“. Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=30836.
Der volle Inhalt der QuelleWe present SOOT, a framework for optimizing Java bytecode. The framework is implemented in Java and supports three intermediate representations for representing Java bytecode: BAF, a streamlined representation of bytecode which is simple to manipulate; JIMPLE, a typed 3-address intermediate representation suitable for optimization; and GRIMP an aggregated version of JIMPLE suitable for decompilation. SOOT also contains a set of transformations between these intermediate representations, and an application programming interface (API) is provided to write optimizations and analyses on Java bytecode in these forms.
In order to demonstrate the usefulness of the framework, we have implemented intraprocedural and whole program optimizations. To show that whole program bytecode optimization can give performance improvements, we provide experimental results for 10 large benchmarks, including 8 SPECjvm98 benchmarks running on JDK 1.2. These results show a speedup of up to 38%.
Pinto, Camara Tarcisio. „Otimização bytecode Java na plataforma J2ME“. Universidade Federal de Pernambuco, 2004. https://repositorio.ufpe.br/handle/123456789/2567.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento Científico e Tecnológico
Aplicações para os dispositivos móveis, como telefones celulares e pagers, implementadas em J2ME (Java 2 Micro Edition) são desenvolvidas sob severas restrições de tamanho e desempenho do código. A indústria tem adotado ferramentas de otimização, como obfuscators e shrinkers, que aplicam otimizações de programa inteiro (Whole Program Optimizations) considerando que o código gerado não será estendido ou usado por outras aplicações. Infelizmente, os desenvolvedores freqüentemente não conhecem suficientemente nestas ferramentas e continuam sacrificando a qualidade do código na tentativa de otimizar suas aplicações. Este trabalho apresenta um estudo original identificando a efetividade das otimizações mais comuns nos obfuscators. Este estudo mostra também que a otimização de Method Inlining, conhecida pelos benefícios de desempenho, tem sido negligenciada por estas ferramentas por normalmente esperarse que ela tenha efeito negativo sobre o tamanho de código. Assim, este trabalho contribui com uma implementação de method inlining entre classes e fundada no princípio de otimização de programa inteiro, capaz de melhorar tanto o tamanho do código como o desempenho da aplicação, ao remover cerca de 50% dos métodos alcançáveis. Finalmente, na tentativa de ajudar os desenvolvedores a tirar o melhor proveito destas ferramentas, o estudo inclui também um guia de boas práticas de programação considerando as otimizações implementadas pelos obfuscators
Modesto, Francisco. „Development of a Java Bytecode Front-End“. Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-6210.
Der volle Inhalt der QuelleThe VizzAnalyzer is a powerful software analysis tool. It is able to extract information from various software representations like source code but also other specifications like UML. The extracted information is input to static analysis of these software projects. One programming language the VizzAnalyzer can extract information from is Java source code.
Analyzing the source code is sufficient for most of the analysis. But, sometimes it is necessary to analyze compiled classes either because the program is only available in byte-code, or the scope of analysis includes libraries that exist usually in binary form. Thus, being able to extract information from Java byte-code is paramount for the extension of some analyses, e.g., studying the dependecy structure of a project and the libraries it uses.
Currently, the VizzAnalyzer does not feature information extraction from Java byte-code. To allow, e.g., the analysis of the project dependency structure, we extend the VizzAnalyzer tool with a bytecode front-end that will allow the extraction of information from Java bytecode.
This thesis describes the design and implementation of the bytecode front-end. After we implemented and integrated the new front-end with the VizzAnalyzer, we are now able to perform new analyses that work on data extracted from both, source- and bytecode.
Zabel, Martin. „Effiziente Mehrkernarchitektur für eingebettete Java-Bytecode-Prozessoren“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-84156.
Der volle Inhalt der QuelleZabel, Martin, und Rainer G. Spallek. „SHAP — Scalable Multi-Core Java Bytecode Processor“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-97619.
Der volle Inhalt der QuelleBücher zum Thema "Java bytecode"
Lew, Dion. BCIR: A framework for the representation and manipulation of the Java bytecode. 2001, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Java bytecode"
Stärk, Robert F., Joachim Schmid und Egon Börger. „Bytecode type assignments“. In Java and the Java Virtual Machine, 223–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59495-3_16.
Der volle Inhalt der QuelleCzarnik, Patryk, Jacek Chrząszcz und Aleksy Schubert. „A Java Bytecode Formalisation“. In Lecture Notes in Computer Science, 135–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03592-1_8.
Der volle Inhalt der QuelleFischer, Robert. „Lambdas in Java Bytecode“. In Java Closures and Lambda, 139–52. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4302-5999-2_8.
Der volle Inhalt der QuelleAlbert, Elvira, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla und Damiano Zanardini. „Termination Analysis of Java Bytecode“. In Lecture Notes in Computer Science, 2–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68863-1_2.
Der volle Inhalt der QuelleBrockschmidt, Marc, Carsten Otto, Christian von Essen und Jürgen Giesl. „Termination Graphs for Java Bytecode“. In Verification, Induction, Termination Analysis, 17–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17172-7_2.
Der volle Inhalt der QuelleLaneve, Cosimo, und Abel Garcia. „Deadlock Detection of Java Bytecode“. In Logic-Based Program Synthesis and Transformation, 37–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94460-9_3.
Der volle Inhalt der QuelleLeroy, Xavier. „Java Bytecode Verification: An Overview“. In Computer Aided Verification, 265–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44585-4_26.
Der volle Inhalt der QuelleAlbert, E., P. Arenas, S. Genaim, G. Puebla und D. Zanardini. „Cost Analysis of Java Bytecode“. In Programming Languages and Systems, 157–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71316-6_12.
Der volle Inhalt der QuelleTanter, Éric, Marc Ségura-Devillechaise, Jacques Noyé und José Piquer. „Altering Java Semantics via Bytecode Manipulation“. In Generative Programming and Component Engineering, 283–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45821-2_18.
Der volle Inhalt der QuelleGenaim, Samir, und Fausto Spoto. „Information Flow Analysis for Java Bytecode“. In Lecture Notes in Computer Science, 346–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30579-8_23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Java bytecode"
Barbuti, Roberto, und Stefano Cataudella. „Java bytecode verification on Java cards“. In the 2004 ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/967900.967991.
Der volle Inhalt der QuelleBinder, Walter, Jarle Hulaas und Philippe Moret. „Advanced Java bytecode instrumentation“. In the 5th international symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1294325.1294344.
Der volle Inhalt der QuelleBurdy, Lilian, und Mariela Pavlova. „Java bytecode specification and verification“. In the 2006 ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1141277.1141708.
Der volle Inhalt der QuelleLance, Don, Roland H. Untch und Nancy J. Wahl. „Bytecode-based Java program analysis“. In the 37th annual Southeast regional conference (CD-ROM). New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/306363.306382.
Der volle Inhalt der QuelleRibeiro, José Carlos Bregieiro, Francisco Fernández de Vega und Mário Zenha-Rela. „Using Dynamic Analysis Of Java Bytecode For Evolutionary Object-Oriented Unit Testing“. In Workshop de Testes e Tolerância a Falhas. Sociedade Brasileira de Computação - SBC, 2007. http://dx.doi.org/10.5753/wtf.2007.23245.
Der volle Inhalt der Quelle„JSIMIL - A Java Bytecode Clone Detector“. In 5th International Conference on Software and Data Technologies. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003013403330336.
Der volle Inhalt der QuelleZambon, Andrea. „Aucsmith-Like Obfuscation of Java Bytecode“. In 2012 12th IEEE Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2012. http://dx.doi.org/10.1109/scam.2012.14.
Der volle Inhalt der QuelleOcteau, Damien, Somesh Jha und Patrick McDaniel. „Retargeting Android applications to Java bytecode“. In the ACM SIGSOFT 20th International Symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2393596.2393600.
Der volle Inhalt der QuelleSantone, Antonella, und Gigliola Vaglini. „Local model checking of Java bytecode“. In the 14th international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/568760.568827.
Der volle Inhalt der QuelleAlbert, Elvira, Samir Genaim und Miguel Gomez-Zamalloa. „Heap space analysis for java bytecode“. In the 6th international symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1296907.1296922.
Der volle Inhalt der Quelle