Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Iterated forcing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Iterated forcing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Iterated forcing"
Friedman, Sy D. „Iterated Class Forcing“. Mathematical Research Letters 1, Nr. 4 (1994): 427–36. http://dx.doi.org/10.4310/mrl.1994.v1.n4.a3.
Der volle Inhalt der QuelleGroszek, Marcia J. „Applications of iterated perfect set forcing“. Annals of Pure and Applied Logic 39, Nr. 1 (Juli 1988): 19–53. http://dx.doi.org/10.1016/0168-0072(88)90044-9.
Der volle Inhalt der QuelleFerrero, Daniela, Thomas Kalinowski und Sudeep Stephen. „Zero forcing in iterated line digraphs“. Discrete Applied Mathematics 255 (Februar 2019): 198–208. http://dx.doi.org/10.1016/j.dam.2018.08.019.
Der volle Inhalt der QuelleSpinas, O. „Iterated forcing in quadratic form theory“. Israel Journal of Mathematics 79, Nr. 2-3 (Oktober 1992): 297–315. http://dx.doi.org/10.1007/bf02808222.
Der volle Inhalt der QuelleIhoda, Jaime I., und Saharon Shelah. „Souslin forcing“. Journal of Symbolic Logic 53, Nr. 4 (Dezember 1988): 1188–207. http://dx.doi.org/10.1017/s0022481200028012.
Der volle Inhalt der QuelleAudrito, Giorgio, und Matteo Viale. „Absoluteness via resurrection“. Journal of Mathematical Logic 17, Nr. 02 (27.11.2017): 1750005. http://dx.doi.org/10.1142/s0219061317500052.
Der volle Inhalt der QuelleIshiu, Tetsuya, und Paul B. Larson. „Some results about (+) proved by iterated forcing“. Journal of Symbolic Logic 77, Nr. 2 (Juni 2012): 515–31. http://dx.doi.org/10.2178/jsl/1333566635.
Der volle Inhalt der QuelleShelah, Saharon. „Iterated forcing and normal ideals onω 1“. Israel Journal of Mathematics 60, Nr. 3 (Dezember 1987): 345–80. http://dx.doi.org/10.1007/bf02780398.
Der volle Inhalt der QuelleMitchell, William. „Prikry forcing at κ+ and beyond“. Journal of Symbolic Logic 52, Nr. 1 (März 1987): 44–50. http://dx.doi.org/10.2307/2273859.
Der volle Inhalt der QuelleKanovei, Vladimir. „On non-wellfounded iterations of the perfect set forcing“. Journal of Symbolic Logic 64, Nr. 2 (Juni 1999): 551–74. http://dx.doi.org/10.2307/2586484.
Der volle Inhalt der QuelleDissertationen zum Thema "Iterated forcing"
Tzimas, Dimitrios V. „A new framework of iterated forcing along a gap one morass at [omega]1“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29862.
Der volle Inhalt der QuelleOn t.p., "[omega]" appears as the lower case Greek letter.
Includes bibliographical references (leaves 38-39 ).
by Dimitrios V. Tzimas.
Ph.D.
Santiago, Suárez Juan Manuel. „Infinitary logics and forcing“. Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP7024.
Der volle Inhalt der QuelleThe main results of this thesis are related to forcing, but our presentation benefits from relating them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the basic framework of first-order model theory had been established, Carol Karp, followed by Makkai, Keisler and Mansfield among others, developed the area of logic known as "infinitary logics". One key idea from our work, which was more or less implicit in the research of many, is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order logic. Specifically, much alike compactness is the key tool to produce models of first-order theories, forcing can be the key tool to produce the interesting models of infinitary theories. The first part of this thesis explores the relationship between infinitary logics and Boolean valued models. Leveraging on the translation of forcing in the Boolean valued models terminology, this part lays the foundations connecting infinitary logics to forcing. A consistency property is a family of sets of non-contradictory sentences closed under certain natural logical operations. Consistency properties are the standard tools to produce models of non-contradictory infinitary sentences. The first major result we establish in the thesis is the Boolean Model Existence Theorem, asserting that any sentence which belongs to some set which is in some consistency property has a Boolean valued model with the mixing property, and strengthens Mansfield's original result. The Boolean Model Existence Theorem allows us to prove three additional results in the model theory of Boolean valued models for the semantics induced by Boolean valued models with the mixing property: a completeness theorem, an interpolation theorem, and an omitting types theorem. These can be shown to be generalizations of the corresponding results for first order logic in view of the fact that a first order sentence has a Tarski model if and only if it has a Boolean valued model. However we believe that the central result of this part of the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order compactness for infinitary logics, we introduce the concepts of conservative strengthening and of finite conservativity. We argue that the appropriate generalization of finite consistency (relative to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given by Boolean valued models). The Conservative Compactness Theorem states that any finitely conservative family of sentences admits a Boolean valued model with the mixing property. In our opinion these results support the claim: Boolean-valued models with the mixing property provide a natural semantics for infinitary logics. In the second part of the thesis we leverage on the results of the first part to address the following question: For what family of infinitary formulae can we force the existence of a Tarski model for them without destroying stationary sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking result of Asperò and Schindler. We define the ASK property -a variant of AS-goodness- which we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula with the ASK-property, one can force the existence of a Tarski model in a stationary set preserving way. The proof of this result builds on the model theoretic perspective of forcing presented in the first part of the thesis, and does so introducing a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined with the Conservative Compactness Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics) and (compactness, first-order logic)
Spasojević, Zoran. „Gaps, trees and iterated forcing“. 1994. http://catalog.hathitrust.org/api/volumes/oclc/32101789.html.
Der volle Inhalt der QuelleBücher zum Thema "Iterated forcing"
Chong, C. T., W. H. Woodin, Qi Feng, T. A. Slaman und Yue Yang. Forcing, iterated ultrapowers, and Turing degrees. New Jersey: World Scientific, 2015.
Den vollen Inhalt der Quelle findenChong, Chitat, Qi Feng, Theodore A. Slaman, W. Hugh Woodin und Yue Yang. Forcing, Iterated Ultrapowers, and Turing Degrees. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9697.
Der volle Inhalt der QuelleForcing, Iterated Ultrapowers, and Turing Degrees. World Scientific Publishing Co Pte Ltd, 2015.
Den vollen Inhalt der Quelle findenForcing, Iterated Ultrapowers, and Turing Degrees. World Scientific Publishing Co Pte Ltd, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Iterated forcing"
Shelah, Saharon. „Iterated Forcing with Uncountable Support“. In Perspectives in Mathematical Logic, 679–731. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-12831-2_14.
Der volle Inhalt der QuelleCummings, James. „Iterated Forcing and Elementary Embeddings“. In Handbook of Set Theory, 775–883. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_13.
Der volle Inhalt der Quelle„Iterated Forcing“. In An Introduction to Independence for Analysts, 183–228. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511662256.009.
Der volle Inhalt der Quelle„Iterated Forcing“. In Forcing for Mathematicians, 85–88. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814566018_0022.
Der volle Inhalt der QuelleGitik, Moti. „PRIKRY-TYPE FORCINGS AND A FORCING WITH SHORT EXTENDERS“. In Forcing, Iterated Ultrapowers, and Turing Degrees, 1–38. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0001.
Der volle Inhalt der Quelle„Iterated Forcing and Martin’s Axiom“. In Fast Track to Forcing, 71–78. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108303866.012.
Der volle Inhalt der QuelleSteel, John. „AN INTRODUCTION TO ITERATED ULTRAPOWERS“. In Forcing, Iterated Ultrapowers, and Turing Degrees, 123–74. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0003.
Der volle Inhalt der QuelleShore, Richard A. „THE TURING DEGREES: AN INTRODUCTION“. In Forcing, Iterated Ultrapowers, and Turing Degrees, 39–121. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Iterated forcing"
Kara, Mustafa C., und Thorsten Stoesser. „A Strong FSI Coupling Scheme to Investigate the Onset of Resonance of Cylinders in Tandem Arrangement“. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23972.
Der volle Inhalt der Quelle