Dissertationen zum Thema „Ischemia“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Ischemia" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Du, Ying. „Ischemic and pharmacological preconditioning of rat myocardium : effects on ischemia-reperfusion injury /“. View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BICH%202005%20DU.
Der volle Inhalt der QuelleChristensen, Thomas. „Experimental focal cerebral ischemia : pathophysiology, metabolism and pharmacology of the ischemic penumbra /“. Copenhagen, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016143698&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleDowden, Jennifer. „Characterizing the neuroprotective efficacy of ischemic preconditioning (ischemic tolerance) : is age an important factor? /“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0019/NQ54834.pdf.
Der volle Inhalt der QuelleHarhous, Zeina. „Deciphering the Interlink between STAT3 and MAPKs in Ischemia/Reperfusion and Ischemic Conditioning“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1145.
Der volle Inhalt der QuelleCardiovascular diseases are leading causes of morbidity and mortality worldwide. Among the mostly prevailing cardiovascular diseases is myocardial infarction, which is pathologically defined as myocardial death due to a prolonged ischemia. Ischemia is an insufficient supply of blood caused by a blockade in the coronary arteries. The early restoration of blood flow is considered the most effective method against the ischemic lesions. Paradoxically, this blood flow restoration is associated with an exacerbation of the tissue injury, leading to the ischemia-reperfusion (I/R) injury. To avoid this injury, the myocardial ischemic conditioning protocol has rejuvenated the field of cardioprotection. This protocol confers its cardioprotective effects via recruiting various endogenous mechanisms following the activation of two intracellular pathways: the reperfusion injury salvage kinase (RISK) or survivor activator factor enhancer (SAFE) pathways. These pathways involve the activation of different signaling cascades and protein kinases. Zooming in through the SAFE pathway, the signal transducer and activator of transcription-3, STAT3, has been identified as a prominent key player in ischemic postconditioning (IPoC). The cardioprotective effects attributed to STAT3 are suggested to be linked to its roles as a transcription factor and as a regulator of the mitochondrial activity, but these are not well studied and elaborated. STAT3 is activated by phosphorylation, which targets the tyrosine 705 and serine 727 residues. In our current work, we initially aimed to investigate the mitochondrial cardioprotective roles of STAT3 following I/R and IPoC. However, we were not able to detect STAT3 in the mitochondria of adult mouse cardiomyocytes under variousbasal and stress conditions using different approaches. Interestingly, we showed an exclusive STAT3 pattern in adult cardiac myocytes, along the T-tubules, and highlighted drawbacks of previously used techniques. Aside from the mitochondrial roles of STAT3, we targeted its signaling and genomic roles during I/R and IPoC. We first aimed to determine, during I/R and IPoC, the temporal kinetics of activation of STAT3 and the other kinases of the RISK pathway including Akt and the MAPKs ERK1/2, JNK and p38. In addition, we aimed to decipher the interlink between the SAFE and RISK pathways through deciphering the interlink between STAT3 and the RISK kinases following IPoC. We showed that a short reperfusion time activates STAT3 and ERK1/2 following ischemia, and that the application of IPoC further activates STAT3 through inducing its tyrosine phosphorylation. We also showed that the interlink between SAFE and RISK pathways, in the IPoC protocol we used, is through STAT3 and ERK1/2. From this signaling level, we moved toward the genomic level whereby we investigated the genomic activity of STAT3 during IPoC. In this regard, we have shown that STAT3 is involved in the regulation of the inflammatory response during IPoC. Overall, this study presents a global approach of STAT3’s mitochondrial, signaling and genomic functions in the context of cardiac protection
Zhang, Jitian. „Nebulized phosphodiesterase 3 inhibitor during warm ischemia attenuates pulmonary ischemia-reperfusion injury“. Kyoto University, 2009. http://hdl.handle.net/2433/126442.
Der volle Inhalt der QuelleLi, Yan. „Inhibitory synpatic transmission in striatal neurons after transient cerebral ischemia“. Connect to resource online, 2009. http://hdl.handle.net/1805/2021.
Der volle Inhalt der QuelleTitle from screen (viewed on December 1, 2009). Department of Anatomy and Cell Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Zao C. Xu, Feng C. Zhou, Charles R. Yang, Theodore R. Cummins. Includes vitae. Includes bibliographical references (leaves 115-135).
Keasey, Matthew P. „MicroRNAs in Cerebral Ischemia“. Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526014.
Der volle Inhalt der QuelleLipšic, Erik. „Erythropoietin in cardiac ischemia“. [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/293076030.
Der volle Inhalt der QuelleAoyama, Akihiro. „Post-ischemic Infusion of Atrial Natriuretic Peptide Attenuates Warm Ischemia-Reperfusion Injury in Rat Lung“. Kyoto University, 2011. http://hdl.handle.net/2433/142544.
Der volle Inhalt der QuelleHultgren, Rebecka. „Lower limb ischemia in women /“. Stockholm, 2004. http://diss.kib.ki.se/2003/91-7349-798-3.
Der volle Inhalt der QuelleMolnar, Maria. „Hyperglycemia in Experimental Cerebral Ischemia“. Doctoral thesis, Uppsala universitet, Anestesiologi och intensivvård, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-247763.
Der volle Inhalt der QuelleAlrabadi, Nasr Nofal Salieba. „Novel Pharmacological Approaches for Understanding and Modulating the Pathology of Ischemic Heart Disease“. Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15926.
Der volle Inhalt der QuelleMACRI', MARIA LOREDANA. „Ruolo dello scambiatore Na+/Ca2+ nel precondizionamento ischemico in modelli sperimentali di ischemia-riperfusione cardiaca“. Doctoral thesis, Università Politecnica delle Marche, 2015. http://hdl.handle.net/11566/242929.
Der volle Inhalt der QuelleIschemic heart diseases are a major cause of morbidity and mortality in western nations. Defects in myocardial Ca2+ transport system with cytosolic Ca2+ overload is a major contributor to myocardial ischemia/reperfusion (I/R) injury. Ischemic preconditioning (IPC) is well known to confer cardioprotection against myocardial I/R injury attenuating the cytosolic Ca2+ overload. One of the key players for the maintenance of [Ca2+]i homeostasis in the heart is the sodium/calcium exchanger 1 (NCX1). During IR, NCX induces Ca2+ influx, which strengthens Ca2+ overload. SN-6, a benzyloxyphenyl derivative and proposed selective NCX1 inhibitor, could be used to prevent I/R injury. The present study aimed at evaluating the potential role of NCX1 during ischemic preconditioning in isolated rat ventricular myocyctes, hearts and in a cellular cell line model (H9c2 wilde-type and a stable transfected with NCX1. In all the models the I/R was observed an increased cell toxicity and the SN6 was able to revert this effect. Subseqyently, isolated rat ventricular myocytes and whole hearts were subjected to PI/R. the results obtained suggests that the exposure to PC before I/R improved cell viability and reduced is-chemic areas. The inhibition of the reverse mode of the NCX1 by SN-6 during PC abolished the cardioprotection observed in I/R alone. Furthemore, in isolated rat ventricular myocytes and whole hearts, was observed that PC and I/R alone were able to induce an increased protein levels of NCX1. This effect was completely reverted by SN6. The exposure to PC before I/R induced NCX1 protein levels greater than PC and I/R alone. The presences of SN6, in whole hearts, reverted this effect. In conclusion, the present thesis sug-gests that NCX1 may play an important role in PC reducing the cell toxicity induced by I/R.
Tupling, Allan Russell. „Effects of ischemia and ischemia-reperfusion on sarcoplasmic reticulum structure and function in rat skeletal muscle“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ53520.pdf.
Der volle Inhalt der QuelleYamasaki, Kenzou. „Preconditioning with 15-min ischemia extends myocardial infarct size after subsequent 30-min ischemia in rabbits“. Kyoto University, 1997. http://hdl.handle.net/2433/202231.
Der volle Inhalt der QuelleFröjse, Rolf. „Exploring Intestinal Ischemia : An experimental study“. Doctoral thesis, Umeå universitet, Kirurgisk och perioperativ vetenskap, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-461.
Der volle Inhalt der QuelleAbunasra, Haitham Juma. „Gene therapy in myocardial ischemia-reperfusion“. Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404964.
Der volle Inhalt der QuelleBonneville, Marika. „Endocannabinoid Modulation of Post-Ischemia Depression“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35056.
Der volle Inhalt der QuelleThorén, Anna. „Astrocyte metabolism following focal cerebral ischemia /“. Göteborg : Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Göteborg University, 2006. http://hdl.handle.net/2077/744.
Der volle Inhalt der QuelleSoundarapandian, Mangala Meenakshi. „Glutamate Excitotoxicity in Epilepsy and Ischemia“. Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3169.
Der volle Inhalt der QuellePh.D.
Department of Biomolecular Science
Burnett College of Biomedical Sciences
Biomolecular Sciences PhD
Aluri, Hema. „INTRA-MITOCHONDRIAL INJURY DURING ISCHEMIA-REPERFUSION“. VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/474.
Der volle Inhalt der QuelleTodd, Michael. „The effects of multiple ischemia and survival times on hippocampal CA1 neuronal cell loss in a rat model of global ischemia: A long-term ischemia maturation study“. Thesis, University of Ottawa (Canada), 1998. http://hdl.handle.net/10393/4230.
Der volle Inhalt der QuelleTodd, Mike. „The effects of multiple ischemia and survival times on hippocampal CA1 neuronal cell loss in a rat model of global ischemia, a long-term ischemia maturation study“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ36746.pdf.
Der volle Inhalt der QuelleThomas, Sunu Samuel. „Murine models of cerebral ischemia, development of a mouse model of global cerebral ischemia; response of GluR2 knockout mice in a model of permanent focal cerebral ischemia“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0026/MQ50439.pdf.
Der volle Inhalt der QuelleAdhami, Faisal. „Differential Adult and Neonatal Response to Cerebral Ischemia-Hypoxia“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1196054266.
Der volle Inhalt der QuelleZouita, Abdel Hakim. „Ischemia modified-albumin as a biomarker of myocardial ischemia : early diagnosis of acute coronary syndrome and cost effectiveness analysis“. Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/ischemia-modifiedalbumin-as-a-biomarker-of-myocardial-ischemia(326d84fe-6bb8-463d-b7fc-00ad3dfbc6c8).html.
Der volle Inhalt der QuelleVenardos, Kylie M. „Myocardial Antioxidant Enzyme Systems, Ischemia-Reperfusion Injury, and Selenium“. Thesis, Griffith University, 2005. http://hdl.handle.net/10072/365301.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Health Sciences
Full Text
McDonough, Jason L. „Myofilament protein modifications in myocardial ischemia/reperfusion“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ65682.pdf.
Der volle Inhalt der QuelleSnoeckx, Luc Henricus Elisabeth Hyacinthus. „Ischemia tolerance of the hypertrophied rat heart“. Maastricht : Maastricht : Rijksuniversiteit Limburg ; University Library, Maastricht University [Host], 1987. http://arno.unimaas.nl/show.cgi?fid=5399.
Der volle Inhalt der QuelleNelissen-Vrancken, Henrica Johanna Maria Gerardine. „Local renin angiotensin systems and peripheral ischemia“. Maastricht : Maastricht : Universiteit Maastricht ; University Library, Maastricht University [Host], 1992. http://arno.unimaas.nl/show.cgi?fid=5719.
Der volle Inhalt der QuelleRoekaerts, Paul M. H. J. „Alpha2-adrenergic receptor agonists in myocardial ischemia“. [Maastricht : Maastricht : Universiteit Maastricht] ; University Library, Maastricht University [Host], 1997. http://arno.unimaas.nl/show.cgi?fid=5784.
Der volle Inhalt der QuelleLips, Jeroen. „Experimental spinal cord ischemia detection and protection /“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/62717.
Der volle Inhalt der QuelleWinbladh, Anders. „Microdialysis in Liver Ischemia and Reperfusion injury“. Doctoral thesis, Linköpings universitet, Kirurgi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68651.
Der volle Inhalt der QuelleBjörnsson, Bergþór. „Methods to Reduce Liver Ischemia/Reperfusion Injury“. Doctoral thesis, Linköpings universitet, Institutionen för klinisk och experimentell medicin, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110318.
Der volle Inhalt der QuelleKarelina, Ekaterina. „MECHANISMS OF SOCIAL NEUROPROTECTION AFTER CEREBRAL ISCHEMIA“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274922479.
Der volle Inhalt der QuelleIwase, Tomoyuki. „Ischemic Preconditioning Is Associated With a Delay in Ischemia-Induced Reduction of β-Adrenergic Signal Transduction in Rabbit Hearts“. Kyoto University, 1994. http://hdl.handle.net/2433/168855.
Der volle Inhalt der QuelleKyoto University (京都大学)
0048
新制・課程博士
博士(医学)
甲第5551号
医博第1521号
新制||医||576(附属図書館)
UT51-94-C9
京都大学大学院医学研究科内科系専攻
(主査)教授 北 徹, 教授 眞崎 知生, 教授 篠山 重威
学位規則第4条第1項該当
Li, Ping-An. „Mechanisms of acidosis-mediated ischemic brain damage histopathology and pathophysiology /“. Lund : Lund University, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38158955.html.
Der volle Inhalt der QuelleEbert, Natalie Rut. „Cortical spreading ischaemia als Folge von freiem Hämoglobin und erhöhter Kaliumkonzentration im Subarachnoidalraum induziert cortikale Infakte bei der Ratte“. Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2001. http://dx.doi.org/10.18452/14645.
Der volle Inhalt der QuelleThe pathogenesis of delayed ischemic neurological deficits after subarachnoid hemorrhage has been related to products of hemolysis. Topical brain superfusion of artificial cerebrospinal fluid (ACSF) containing L-NA a NOS-inhibitor and high concentration of K+ has shown to induce ischemia in rats. Superimposed on a slow vasospastic reaction, the ischemic events represent spreading depolarisation of the neuronal-glial network that trigger acute vasoconstriction. The purpose of the present study was to investigate whether such spreading ischemias in the cortex could be caused also by the hemolysis products hemoglobin and K+ and whether such spreading cortical ischemias lead to brain damage. Methods: A cranial window was implanted in 24 rats. Cerebral blood flow (CBF) was measured using laser Doppler flowmetry, and direct current(DC)potentials were recorded. The ACSF was superfused topically over the brain. Rats were assigned to three groups representing ACSF composition. Analysis included classical histochemical and immunhistochemical studies. Superfusion of ACSF containing Hb combined with high concentration of K+ (35 mmol/L) reduced CBF gradually. Spreading ischemia in the cortex appeared when CBF reached 40 to 70% compared to baseline (which was 100%). This cortical spreading ischemia was characterized by sharp negative shift in DC, which preceded a steep CBF decrease that was followed by a slow recovery. In 9 of the surviving animals widespread cortical infarction was observed at the site of the cranial window and neighbouring areas in contrast to the findings in the two control groups. Conclusion: Subarachnoid Hb combined with high K+ causes cortical spreading ischemia and leads to widespread necrosis of the cortex.
Hooshdaran, Bahman. „DUAL INHIBITION OF CATHEPSIN G AND CHYMASE AFTER ISCHEMIA REPERFUSION: THE ROLE OF INFLAMMATORY SERINE PROTEASES IN ISCHEMIA REPERFUSION INJURY“. Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/475423.
Der volle Inhalt der QuellePh.D.
Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality in the world (4). Restoration of coronary flow to the ischemic myocardium by interventions such as angioplasty, thrombolytic treatment or coronary bypass surgery is the current standard therapy for AMI (5). However, reperfusion of the ischemic myocardium may result in paradoxical cardiomyocyte dysfunction and worsen tissue damage, in a process known as “reperfusion injury” (6). Ischemic reperfusion (IR) injury may intensify pathological processes that contribute to the generation of oxyradicals, disturbances in cation homeostasis, and depletion of cellular energy stores, which may elicit arrhythmias, contractile dysfunction, and ultrastructural damage of the myocardium. These changes can lead to heart failure and ultimately sudden death. The exact mechanisms of IR injury are not fully known (7). Molecular, cellular, and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidat
Temple University--Theses
Yusof, Mozow. „Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4779.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. Includes bibliographical references.
SAKAMOTO, NOBUO, TATSUAKI MATSUBARA, YOSHIHIRO KAKINUMA und TATSUO HASHIMOTO. „MYOCARDIAL METABOLIC MARKERS OF TOTAL ISCHEMIA IN VITRO“. Nagoya University School of Medicine, 1994. http://hdl.handle.net/2237/15927.
Der volle Inhalt der QuelleEdrissi, Hamidreza. „Blood Brain Barrier Dysfunction in Chronic Cerebral Ischemia“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32531.
Der volle Inhalt der QuelleLabruto, Fausto. „Modifications of cardiovascular response to ischemia and trauma /“. Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-379-5/.
Der volle Inhalt der QuelleNg, Kit-ying. „Neuroprotective effects of adiponectin in focal cerebral ischemia“. Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39634371.
Der volle Inhalt der QuelleBogart, Robert William. „The effect of stress on global cerebral ischemia“. Connect to resource, 2008. http://hdl.handle.net/1811/32235.
Der volle Inhalt der QuelleNg, Kit-ying, und 吳潔瑩. „Neuroprotective effects of adiponectin in focal cerebral ischemia“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39634371.
Der volle Inhalt der QuelleWang, Haihui. „Ribonomic control during global brain ischemia and reperfusion“. Thesis, Wayne State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3641445.
Der volle Inhalt der QuelleThe study presented here used "omic" technology to look at the mechanism behind the selective delayed death of hippocampus CA1 neurons after transient global brain ischemia. The main findings are summarized: 1. The main form of ELAV protein family member detected in CA1/CA3 in Hu protein immunoprecipitation and polysomes was HuB (Rel-N1). HuB is present in control CA3, 8 hr reperfused CA3, and 8 hr reperfused CA1, but absent from control CA1. AUF-1, hnRNP K, hnRNP M were also absent from control CA1 following Hu protein immunoprecipitation and Western blot, suggesting that HuB bound AUF-1, hnRNP K, hnRNP M in all experimental groups except control CA1. 2. mRNA populations were different between sucrose pad preparation and sucrose gradient preparations of polysomes, although both were enriched with ARE-mRNA. This suggests different RNA binding complexes were isolated by the two methods. 3. Polysomes fractionation on sucrose pad and Hu protein immunoprecipitations using post-mitochondrial supernatants from homogenized brain regions were shown by 316 liquid chromatography mass spectroscopy to be over 75% contaminated by neuron debris, cytoskeleton and internal membrane structures, in spite of showing no contamination by Western blots of organelle markers. This suggests proteomics should become the accepted standard for validating purity of reactions derived from homogenized tissues. To summarize the results, I have worked up a consistent method of isolating polysomes from whole animal model, which has less contamination than the sucrose density gradient method. Both results from Hu IP and polysomes experiments show that control CA1 is in a different state compared with control CA3. My results suggest that the selective vulnerability of CA1 after ischemia reperfusion injury may be due, in part, to the fact that CA1 is "weaker" from the beginning. This finding is significant as it shifts the focus of research from studying the difference of ischemia reperfusion injury to the different initial states of CA1 and CA3 neurons. This study has also reformed our general idea as revealed by the high resolution of proteomics, which is superior to Western blotting for detecting contamination of samples. It is shown here that contaminationmakes up a large proportion of subcellular fractionations. This result suggests proteomics should be the new standard for quantifying contaminants, particularly in fractions obtained from whole tissues in animal experimental models.
Duarte, Sérgio Miguel Coelho. „Matrix-leukocyte interactions in liver ischemia-reperfusion injury“. Doctoral thesis, Instituto de Ciências Biomédicas Abel Salazar, 2011. http://hdl.handle.net/10216/63694.
Der volle Inhalt der QuelleRaghavan, Aparna. „Neuroprotective Potential of Withania Somnifera in Cerebral Ischemia“. University of Toledo Health Science Campus / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=mco1416570371.
Der volle Inhalt der QuelleMoore, Rustin MacArthur. „Large colon ischemia-reperfusion injury in the horse /“. The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487853913101881.
Der volle Inhalt der Quelle