Zeitschriftenartikel zum Thema „Iridium-catalyzed borylation“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Iridium-catalyzed borylation.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Iridium-catalyzed borylation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Shi, Yongjia, Qian Gao und Senmiao Xu. „Iridium-Catalyzed Asymmetric C–H Borylation Enabled by Chiral Bidentate Boryl Ligands“. Synlett 30, Nr. 19 (28.10.2019): 2107–12. http://dx.doi.org/10.1055/s-0039-1690225.

Der volle Inhalt der Quelle
Annotation:
Asymmetric synthesis of optically pure organoboron compounds is a topic that has received a number of attentions owing to their particular importance in synthetic chemistry and drug discovery. We herein highlight recent advances in the iridium-catalyzed C–H borylation of diarylmethylamines and cyclopropanes enabled by chiral bidentate boryl ligands.1 Introduction2 Ir-Catalyzed Asymmetric C(sp2)–H Borylation of Diarylmethylamines3 Ir-Catalyzed Enantioselective C(sp3)–H Borylation of Cyclopropanes4 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chattopadhyay, Buddhadeb, Mirja Md Mahamudul Hassan, Md Emdadul Hoque, Sayan Dey, Saikat Guria und Brindaban Roy. „Iridium-Catalyzed Site-Selective Borylation of 8-Arylquinolines“. Synthesis 53, Nr. 18 (11.05.2021): 3333–42. http://dx.doi.org/10.1055/a-1506-3884.

Der volle Inhalt der Quelle
Annotation:
AbstractWe report a convenient method for the highly site-selective borylation of 8-arylquinoline. The reaction proceeds smoothly in the presence of a catalytic amount of [Ir(OMe)(cod)]2 and 2-phenylpyridine derived ligand using bis(pinacolato)diborane as the borylating agent. The reactions occur with high selectivity with many functional groups, providing a series of borylated 8-aryl quinolines with good to excellent yield and excellent selectivity. The borylated compounds formed in this method can be transformed into various important synthons by using known transformations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chotana, Ghayoor, Soneela Asghar, Tayyaba Shahzadi, Meshari Alazmi, Xin Gao, Abdul-Hamid Emwas, Rahman Saleem und Farhat Batool. „Iridium-Catalyzed Regioselective Borylation of Substituted Biaryls“. Synthesis 50, Nr. 11 (28.03.2018): 2211–20. http://dx.doi.org/10.1055/s-0036-1591968.

Der volle Inhalt der Quelle
Annotation:
Biarylboronic esters are generally prepared by directed ortho­-metalation or by Miyaura borylation and hence rely on the presence of a directing group or pre-functionalization. In this paper, the preparation of biarylboronic esters by direct C–H borylation of biaryl substrates is reported. Sterically governed regioselectivities were observed in the borylation of appropriately substituted biaryls by using [Ir(OMe)(COD)]2 precatalyst and di-tert-butylbipyridyl ligand. The resulting biarylboronic esters were isolated in 38–98% yields. The synthesized biarylboronic esters were further successfully employed in C–O, C–Br, and C–C coupling reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pan, Zilong, Luhua Liu, Senmiao Xu und Zhenlu Shen. „Ligand-free iridium-catalyzed regioselective C–H borylation of indoles“. RSC Advances 11, Nr. 10 (2021): 5487–90. http://dx.doi.org/10.1039/d0ra10211c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Eastabrook, Andrew S., und Jonathan Sperry. „Iridium-Catalyzed Triborylation of 3-Substituted Indoles“. Australian Journal of Chemistry 68, Nr. 12 (2015): 1810. http://dx.doi.org/10.1071/ch15393.

Der volle Inhalt der Quelle
Annotation:
Readily available 3-substituted indoles undergo a one-pot iridium-catalyzed triborylation at the C2, C5, and C7 sites. 1H NMR analysis indicates borylation at C2 and C7 occurs first (no monoborylated product is observed), with the third borylation occurring as a separate, distinct step that is sterically directed to C5 by a combination of the substituent at C3 and the boronate at C7. The resulting tetrasubstituted indoles possess a substitution pattern that is cumbersome to prepare using existing methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Da Ros, Sara, Anthony Linden, Kim K. Baldridge und Jay S. Siegel. „Boronic esters of corannulene: potential building blocks toward icosahedral supramolecules“. Organic Chemistry Frontiers 2, Nr. 6 (2015): 626–33. http://dx.doi.org/10.1039/c5qo00009b.

Der volle Inhalt der Quelle
Annotation:
Direct iridium-catalyzed multi-borylation provides a valuable tool for the symmetric functionalization of various polycyclic aromatic hydrocarbons, inter alia, regular fivefold derivatization of corannulene.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hitosugi, Shunpei, Yuta Nakamura, Taisuke Matsuno, Waka Nakanishi und Hiroyuki Isobe. „Iridium-catalyzed direct borylation of phenacenes“. Tetrahedron Letters 53, Nr. 9 (Februar 2012): 1180–82. http://dx.doi.org/10.1016/j.tetlet.2011.12.106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chotana, Ghayoor A., Jose R. Montero Bastidas, Susanne L. Miller, Milton R. Smith und Robert E. Maleczka. „One-Pot Iridium Catalyzed C–H Borylation/Sonogashira Cross-Coupling: Access to Borylated Aryl Alkynes“. Molecules 25, Nr. 7 (10.04.2020): 1754. http://dx.doi.org/10.3390/molecules25071754.

Der volle Inhalt der Quelle
Annotation:
Borylated aryl alkynes have been synthesized via one-pot iridium catalyzed C–H borylation (CHB)/Sonogashira cross-coupling of aryl bromides. Direct borylation of aryl alkynes encountered problems related to the reactivity of the alkyne under CHB conditions. However, tolerance of aryl bromides to CHB made possible a subsequent Sonogashira cross-coupling to access the desired borylated aryl alkynes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ishiyama, Tatsuo, und Norio Miyaura. „Iridium-catalyzed borylation of arenes and heteroarenes via C-H activation“. Pure and Applied Chemistry 78, Nr. 7 (01.01.2006): 1369–75. http://dx.doi.org/10.1351/pac200678071369.

Der volle Inhalt der Quelle
Annotation:
Direct C-H borylation of aromatic compounds catalyzed by a transition-metal complex was studied as an economical protocol for the synthesis of aromatic boron derivatives. Iridium complexes generated from Ir(I) precursors and 2,2'-bipyridine ligands efficiently catalyzed the reactions of arenes and heteroarenes with bis(pinacolato)diboron or pinacolborane to produce a variety of aryl- and heteroarylboron compounds. The catalytic cycle involves the formation of a tris(boryl)iridium(III) species and its oxidative addition to an aromatic C-H bond.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Yongpeng, Mengzhu Liu, Yang Sun, Yingshuang Shang, Bo Jiang, Haibo Zhang und Zhenhua Jiang. „Aluminium borate whiskers grafted with boric acid containing poly(ether ether ketone) as a reinforcing agent for the preparation of poly(ether ether ketone) composites“. RSC Advances 5, Nr. 122 (2015): 100856–64. http://dx.doi.org/10.1039/c5ra19635c.

Der volle Inhalt der Quelle
Annotation:
A new soluble boron-containing poly(ether ether ketone) (B-PEEK) was synthesized through iridium-catalyzed C–H borylation and grafted on the surface of aluminum borate whiskers as the coupling agent between the whiskers and PEEK matrix.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Liskey, Carl W., Xuebin Liao und John F. Hartwig. „Cyanation of Arenes via Iridium-Catalyzed Borylation“. Journal of the American Chemical Society 132, Nr. 33 (25.08.2010): 11389–91. http://dx.doi.org/10.1021/ja104442v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Sadler, Scott A., Hazmi Tajuddin, Ibraheem A. I. Mkhalid, Andrei S. Batsanov, David Albesa-Jove, Man Sing Cheung, Aoife C. Maxwell et al. „Iridium-catalyzed C–H borylation of pyridines“. Organic & Biomolecular Chemistry 12, Nr. 37 (01.08.2014): 7318. http://dx.doi.org/10.1039/c4ob01565g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Liskey, Carl W., und John F. Hartwig. „Iridium-Catalyzed C–H Borylation of Cyclopropanes“. Journal of the American Chemical Society 135, Nr. 9 (21.02.2013): 3375–78. http://dx.doi.org/10.1021/ja400103p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Huang, Genping, Marcin Kalek, Rong-Zhen Liao und Fahmi Himo. „Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp3)–H borylation of chlorosilanes“. Chemical Science 6, Nr. 3 (2015): 1735–46. http://dx.doi.org/10.1039/c4sc01592d.

Der volle Inhalt der Quelle
Annotation:
DFT calculations are used to elucidate the reaction mechanism, the role of the chlorosilyl group, and primary vs. secondary and C(sp3)–H vs. C(sp2)–H selectivity of the iridium-catalyzed borylation of chlorosilanes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Liu, Yuhua, Jipei Chen, Kangsheng Zhan, Yiqiang Shen, Hui Gao und Lingmin Yao. „Mechanistic study of the ligand controlled regioselectivity in iridium catalyzed C–H borylation of aromatic imines“. RSC Advances 8, Nr. 62 (2018): 35453–60. http://dx.doi.org/10.1039/c8ra07886f.

Der volle Inhalt der Quelle
Annotation:
DFT calculation indicates that in iridium catalyzed C–H borylation of aromatics, the ortho selectivity is proposed to be attributed to the electron donating effect of AQ ligand, while the meta selectivity is due to steric hindrance of TMP ligand.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Tobisu, Mamoru, Takuya Igarashi und Naoto Chatani. „Iridium/N-heterocyclic carbene-catalyzed C–H borylation of arenes by diisopropylaminoborane“. Beilstein Journal of Organic Chemistry 12 (07.04.2016): 654–61. http://dx.doi.org/10.3762/bjoc.12.65.

Der volle Inhalt der Quelle
Annotation:
Catalytic C–H borylation of arenes has been widely used in organic synthesis because it allows the introduction of a versatile boron functionality directly onto simple, unfunctionalized arenes. We report herein the use of diisopropylaminoborane as a boron source in C–H borylation of arenes. An iridium(I) complex with 1,3-dicyclohexylimidazol-2-ylidene is found to efficiently catalyze the borylation of arenes and heteroarenes. The resulting aminoborylated products can be converted to the corresponding boronic acid derivatives simply by treatment with suitable diols or diamines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Hirano, Koji, Masahiro Miura und Wataru Miura. „Iridium-Catalyzed Site-Selective C–H Borylation of 2-Pyridones“. Synthesis 49, Nr. 21 (02.03.2017): 4745–52. http://dx.doi.org/10.1055/s-0036-1588735.

Der volle Inhalt der Quelle
Annotation:
An iridium-catalyzed site-selective C–H borylation of 2-pyridones has been developed. The site selectivity is predominantly controlled by steric factors, and we can access C4, C5, and C6 C–H on the 2-pyridone ring by the judicious choice of ligand and solvent. Subsequent Suzuki–Miyaura cross-coupling of the borylated products also proceeds to form the corresponding arylated pyridones in good overall yields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kuleshova, Olena, Sobi Asako und Laurean Ilies. „Ligand-Enabled, Iridium-Catalyzed ortho-Borylation of Fluoroarenes“. ACS Catalysis 11, Nr. 10 (30.04.2021): 5968–73. http://dx.doi.org/10.1021/acscatal.1c01206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Song, Shu-Yong, Yinwu Li, Zhuofeng Ke und Senmiao Xu. „Iridium-Catalyzed Enantioselective C–H Borylation of Diarylphosphinates“. ACS Catalysis 11, Nr. 21 (21.10.2021): 13445–51. http://dx.doi.org/10.1021/acscatal.1c03888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Robbins, Daniel W., Timothy A. Boebel und John F. Hartwig. „Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles“. Journal of the American Chemical Society 132, Nr. 12 (31.03.2010): 4068–69. http://dx.doi.org/10.1021/ja1006405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Liskey, Carl W., und John F. Hartwig. „ChemInform Abstract: Iridium-Catalyzed C-H Borylation of Cyclopropanes.“ ChemInform 44, Nr. 34 (01.08.2013): no. http://dx.doi.org/10.1002/chin.201334177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Steel, Patrick G., und et al et al. „ChemInform Abstract: Iridium-Catalyzed C-H Borylation of Pyridines.“ ChemInform 46, Nr. 9 (16.02.2015): no. http://dx.doi.org/10.1002/chin.201509190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Liskey, Carl W., Xuebin Liao und John F. Hartwig. „ChemInform Abstract: Cyanation of Arenes via Iridium-Catalyzed Borylation.“ ChemInform 42, Nr. 4 (30.12.2010): no. http://dx.doi.org/10.1002/chin.201104045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Mamlouk, Hind, Jakkrit Suriboot, Praveen Kumar Manyam, Ahmed AlYazidi, David E. Bergbreiter und Sherzod T. Madrahimov. „Highly active, separable and recyclable bipyridine iridium catalysts for C–H borylation reactions“. Catalysis Science & Technology 8, Nr. 1 (2018): 124–27. http://dx.doi.org/10.1039/c7cy01641g.

Der volle Inhalt der Quelle
Annotation:
Iridium complexes generated from Ir(i) precursors and PIB oligomer functionalized bpy ligands efficiently catalyzed the reaction of arenes with bis(pinacolato)diboron under mild conditions to produce a variety of arylboronate compounds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Maegawa, Yoshifumi, und Shinji Inagaki. „Iridium–bipyridine periodic mesoporous organosilica catalyzed direct C–H borylation using a pinacolborane“. Dalton Transactions 44, Nr. 29 (2015): 13007–16. http://dx.doi.org/10.1039/c5dt00239g.

Der volle Inhalt der Quelle
Annotation:
Iridium complex fixed on periodic mesoporous organosilica containing bipyridine ligands within a framework showed efficient heterogeneous catalysis for direct C–H borylation of arenes and heteroarenes in combination with an inexpensive pinacolborane.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Chotana, Ghayoor, Tayyaba Shahzadi und Rahman Saleem. „Facile Synthesis of Halogen Decorated para-/meta-Hydroxy­benzoates by Iridium-Catalyzed Borylation and Oxidation“. Synthesis 50, Nr. 21 (09.08.2018): 4336–42. http://dx.doi.org/10.1055/s-0037-1610538.

Der volle Inhalt der Quelle
Annotation:
Hydroxybenzoates are an important class of phenols that are widely used as preservatives and antiseptics in the food and pharmaceutical industries. In this report, a facile preparation of 2,6- and 2,3-disubstituted 4/5-hydroxybenzoates by iridium-catalyzed borylation of respective disubstituted benzoate esters followed by oxidation is described. This synthetic route allows for the incorporation of halogens in the final hydroxybenzoates with substitution patterns not readily accessible by the traditional routes of aromatic functionalization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sasaki, Ikuo, Tatsunosuke Amou, Hajime Ito und Tatsuo Ishiyama. „Iridium-catalyzed ortho-C–H borylation of aromatic aldimines derived from pentafluoroaniline with bis(pinacolate)diboron“. Org. Biomol. Chem. 12, Nr. 13 (2014): 2041–44. http://dx.doi.org/10.1039/c3ob42497a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Harrisson, Peter, James Morris, Todd B. Marder und Patrick G. Steel. „Microwave-Accelerated Iridium-Catalyzed Borylation of Aromatic C−H Bonds“. Organic Letters 11, Nr. 16 (20.08.2009): 3586–89. http://dx.doi.org/10.1021/ol901306m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Chen, Lili, Yuhuan Yang, Luhua Liu, Qian Gao und Senmiao Xu. „Iridium-Catalyzed Enantioselective α-C(sp3)–H Borylation of Azacycles“. Journal of the American Chemical Society 142, Nr. 28 (29.06.2020): 12062–68. http://dx.doi.org/10.1021/jacs.0c06756.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Wang, Christy, und Jonathan Sperry. „Iridium-Catalyzed C–H Borylation-Based Synthesis of Natural Indolequinones“. Journal of Organic Chemistry 77, Nr. 6 (06.03.2012): 2584–87. http://dx.doi.org/10.1021/jo300330u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Chen, Xiang, Lili Chen, Hongliang Zhao, Qian Gao, Zhenlu Shen und Senmiao Xu. „Iridium‐Catalyzed Enantioselective C(sp 3 )–H Borylation of Cyclobutanes“. Chinese Journal of Chemistry 38, Nr. 12 (08.09.2020): 1533–37. http://dx.doi.org/10.1002/cjoc.202000240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Diesendruck, Charles E., Gabrielle Rubin, Jeffery A. Bertke, Danielle L. Gray und Jeffrey S. Moore. „Crystal structure of 1,3-bis(2,3-dimethylquinoxalin-6-yl)benzene“. Acta Crystallographica Section E Crystallographic Communications 71, Nr. 12 (04.11.2015): 1429–32. http://dx.doi.org/10.1107/s2056989015020435.

Der volle Inhalt der Quelle
Annotation:
The title compound, C26H22N4(I), was synthesized by C—H iridium-catalyzed borylation followed by Suzuki coupling. The molecular structure of (I) consists of a central benzene ring with 3-dimethylquinoxalin-6-yl groups at the 1 and 3 positions. These 2,3-dimethylquinoxalin-6-yl groups twist significantly out of the plane of the benzene ring. There are intermolecular π–π interactions which result in a two-dimensional extended structure. The layers extend parallel to theabplane and stack along thecaxis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Sperry, Jonathan, und Andrew Eastabrook. „Synthetic Access to 3,5,7-Trisubstituted Indoles Enabled by Iridium­-Catalyzed C–H Borylation“. Synthesis 49, Nr. 21 (08.05.2017): 4731–37. http://dx.doi.org/10.1055/s-0036-1589018.

Der volle Inhalt der Quelle
Annotation:
A one-pot conversion of 3-substituted indoles into their 5,7-diboryl derivatives is reported. The simultaneous functionalization of the C5-H and C7-H sites is achieved using an iridium-catalyzed triborylation-protodeborylation sequence. The 5,7-diborylindoles are useful intermediates that can be readily derivatized into a variety of indoles possessing the rare 3,5,7-trisubstitution pattern, including the natural product (+)-plakohypaphorine C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Nagase, Mai, Kenta Kato, Akiko Yagi, Yasutomo Segawa und Kenichiro Itami. „Six-fold C–H borylation of hexa-peri-hexabenzocoronene“. Beilstein Journal of Organic Chemistry 16 (13.03.2020): 391–97. http://dx.doi.org/10.3762/bjoc.16.37.

Der volle Inhalt der Quelle
Annotation:
Hexa-peri-hexabenzocoronene (HBC) is known to be a poorly soluble polycyclic aromatic hydrocarbon for which direct functionalization methods have been very limited. Herein, the synthesis of hexaborylated HBC from unsubstituted HBC is described. Iridium-catalyzed six-fold C–H borylation of HBC was successfully achieved by screening solvents. The crystal structure of hexaborylated HBC was confirmed via X-ray crystallography. Optoelectronic properties of the thus-obtained hexaborylated HBC were analyzed with the support of density functional theory calculations. The spectra revealed a bathochromic shift of absorption bands compared with unsubstituted HBC under the effect of the σ-donation of boryl groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Liu, Luhua, Rongrong Du und Senmiao Xu. „Ligand-Free Iridium-Catalyzed Borylation of Secondary Benzylic C—H Bonds“. Chinese Journal of Organic Chemistry 41, Nr. 4 (2021): 1572. http://dx.doi.org/10.6023/cjoc202101009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Murphy, Jaclyn M., Xuebin Liao und John F. Hartwig. „Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation“. Journal of the American Chemical Society 129, Nr. 50 (Dezember 2007): 15434–35. http://dx.doi.org/10.1021/ja076498n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Larsen, Matthew A., Seung Hwan Cho und John Hartwig. „Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C–H Bonds“. Journal of the American Chemical Society 138, Nr. 3 (15.01.2016): 762–65. http://dx.doi.org/10.1021/jacs.5b12153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Liskey, Carl W., und John F. Hartwig. „Iridium-Catalyzed Borylation of Secondary C–H Bonds in Cyclic Ethers“. Journal of the American Chemical Society 134, Nr. 30 (20.07.2012): 12422–25. http://dx.doi.org/10.1021/ja305596v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sadler, Scott A., Andrew C. Hones, Bryan Roberts, David Blakemore, Todd B. Marder und Patrick G. Steel. „Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C–H Borylation“. Journal of Organic Chemistry 80, Nr. 10 (Mai 2015): 5308–14. http://dx.doi.org/10.1021/acs.joc.5b00452.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Reyes, Ronald L., Tomohiro Iwai, Satoshi Maeda und Masaya Sawamura. „Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp3)–H Bonds“. Journal of the American Chemical Society 141, Nr. 17 (15.04.2019): 6817–21. http://dx.doi.org/10.1021/jacs.9b01952.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Roering, Andrew J., Lillian V. A. Hale, Phillip A. Squier, Marissa A. Ringgold, Emily R. Wiederspan und Timothy B. Clark. „Iridium-Catalyzed, Substrate-Directed C–H Borylation Reactions of Benzylic Amines“. Organic Letters 14, Nr. 13 (25.06.2012): 3558–61. http://dx.doi.org/10.1021/ol301635x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Partridge, Benjamin M., und John F. Hartwig. „Sterically Controlled Iodination of Arenes via Iridium-Catalyzed C–H Borylation“. Organic Letters 15, Nr. 1 (20.12.2012): 140–43. http://dx.doi.org/10.1021/ol303164h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Robbins, Daniel W., und John F. Hartwig. „Sterically Controlled Alkylation of Arenes through Iridium-Catalyzed CH Borylation“. Angewandte Chemie 125, Nr. 3 (11.12.2012): 967–71. http://dx.doi.org/10.1002/ange.201208203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Hume, Paul, Daniel P. Furkert und Margaret A. Brimble. „ChemInform Abstract: Regioselective Iridium(I)-Catalyzed Remote Borylation of Oxygenated Naphthalenes.“ ChemInform 43, Nr. 42 (20.09.2012): no. http://dx.doi.org/10.1002/chin.201242094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Pang, Yadong, Tatsuo Ishiyama, Koji Kubota und Hajime Ito. „Iridium(I)‐Catalyzed C−H Borylation in Air by Using Mechanochemistry“. Chemistry – A European Journal 25, Nr. 18 (08.03.2019): 4654–59. http://dx.doi.org/10.1002/chem.201900685.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Robbins, Daniel W., Timothy A. Boebel und John F. Hartwig. „ChemInform Abstract: Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles.“ ChemInform 41, Nr. 32 (23.07.2010): no. http://dx.doi.org/10.1002/chin.201032051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Robbins, Daniel W., und John F. Hartwig. „Sterically Controlled Alkylation of Arenes through Iridium-Catalyzed CH Borylation“. Angewandte Chemie International Edition 52, Nr. 3 (11.12.2012): 933–37. http://dx.doi.org/10.1002/anie.201208203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kano, Haruka, Keiji Uehara, Kyohei Matsuo, Hironobu Hayashi, Hiroko Yamada und Naoki Aratani. „Direct borylation of terrylene and quaterrylene“. Beilstein Journal of Organic Chemistry 16 (06.04.2020): 621–27. http://dx.doi.org/10.3762/bjoc.16.58.

Der volle Inhalt der Quelle
Annotation:
The preparation of large rylenes often needs the use of solubilizing groups along the rylene backbone, and all the substituents of the terrylenes and quaterrylenes were introduced before creating the rylene skeleton. In this work, we successfully synthesized 2,5,10,13-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)terrylene (TB4) by using an iridium-catalyzed direct borylation of C–H bonds in terrylene in 56% yield. The product is soluble in common organic solvents and could be purified without column chromatography. Single crystal X-ray diffraction analysis revealed that the terrylene core is not disturbed by the substituents and is perfectly flat. The photophysical properties of TB4 are also unchanged by the substituents because the carbon atoms at 2,5,10,13-positions have less coefficients on its HOMO and LUMO, estimated by theoretical calculations. Finally, the same borylation reaction was applied for quaterrylene, resulting in the formation of soluble tetra-borylated quaterrylene despite a low yield. The post modification of rylenes enables us to prepare their borylated products as versatile units after creating the rylene skeletons.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Boebel, Timothy A., und John F. Hartwig. „Iridium-Catalyzed Preparation of Silylboranes by Silane Borylation and Their Use in the Catalytic Borylation of Arenes“. Organometallics 27, Nr. 22 (24.11.2008): 6013–19. http://dx.doi.org/10.1021/om800696d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Genov, Georgi R., James L. Douthwaite, Antti S. K. Lahdenperä, David C. Gibson und Robert J. Phipps. „Enantioselective remote C–H activation directed by a chiral cation“. Science 367, Nr. 6483 (12.03.2020): 1246–51. http://dx.doi.org/10.1126/science.aba1120.

Der volle Inhalt der Quelle
Annotation:
Chiral cations have been used extensively as organocatalysts, but their application to rendering transition metal–catalyzed processes enantioselective remains rare. This is despite the success of the analogous charge-inverted strategy in which cationic metal complexes are paired with chiral anions. We report here a strategy to render a common bipyridine ligand anionic and pair its iridium complexes with a chiral cation derived from quinine. We have applied these ion-paired complexes to long-range asymmetric induction in the desymmetrization of the geminal diaryl motif, located on a carbon or phosphorus center, by enantioselective C–H borylation. In principle, numerous common classes of ligand could likewise be amenable to this approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie