Zeitschriftenartikel zum Thema „Ions“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Ions.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ions" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ilyasova, X. N. „THE STUDY OF ION-EXCHANGE EQUILIBRIUM OF HEAVY METAL IONS Cо2+ AND Cd2+ ON THE NATURAL AND SYNTHETIC SORBENTS“. Azerbaijan Chemical Journal, Nr. 4 (08.12.2022): 122–27. http://dx.doi.org/10.32737/0005-2531-2022-4-122-127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
These article summaries the results of studying the sorption equilibrium of ions close to their concentration in the liquid industrial waste. For experimental research, solutions with concentration of Со2+ and Cd2+ ions in the range of 1·10-3–1·10-4 N have been used. These concentrations match to ion con¬cen¬tration in industrial liquid waste with the ions mentioned. In the experiments, the Na+- modified forms of natural sorbents based on clinoptilolite from the Aydag deposit and on bentonite from the Dash-Salakhli (Azerbaijan) deposit were used. For comparison, among industrial sorbents, we used synthetic cation exchanger KU–2–8 (styrene and divinylbenzene co–poly¬mer), which we modified in H+, Na+-form. The thermodynamic constant of ion-exchange equilibrium for differently charged ions, calculated by the Gorshkov-Tolmachev formula, does not depend on the solution concentration, and to calculate this value, it is not required to determine the activity coefficient. Based on experiments to determine equilibrium concentrations, we can recommend inexpensive and available Na-clinoptilolite and Na-bentonite instead of synthetic industrial KU-2-8 for the sorption extraction of Co2+ and Cd2+ ions from wastewater
2

UchkunOtoboevich, Kutliev, Tangriberganov Ismoil Urazboyevich und Karimov Muxtor Karimberganovich. „Investigation of Effect Ion Refocusing From the GaP001110 Surface at the Grazing Incidence Ne Ions“. International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31.08.2017): 937–40. http://dx.doi.org/10.31142/ijtsrd2397.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Djunaidi, Muhammad Cholid, und Khabibi Khabibi. „Potential Adsorption of Heavy Metal Ions by Eugenol Compounds and Derivatives through Ion Imprinted Polymer“. Jurnal Kimia Sains dan Aplikasi 22, Nr. 6 (21.10.2019): 263–68. http://dx.doi.org/10.14710/jksa.22.6.263-268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Research on the potential of Ion Imprinted Polymer (IIP) selective adsorption of heavy metals using eugenol compounds and their derivatives has been carried out. Isolation and synthesis of eugenol derivatives with metal selective active groups and their use as selective metal carriers have been carried out with satisfactory results. Carrier effectiveness can still be improved by methods that focus on the target molecule recognition model. This adsorption method is called Ion Imprinted Polymer (IIP). The main components of IIP are functional monomers, crosslinkers, and target molecules. The use of acrylamide and its derivatives as functional monomers is useful with a lot of success achieved but also invites danger because it includes carcinogenic substances, a nerve poison, and so on. Moreover, the N group, which is an active acrylamide group, and its derivatives are only selective towards borderline metals (HSAB theory). Alternatives that are safe and can increase their selectivity are therefore needed. Eugenol, with its three potential functional groups, is believed to be able to replace the function of acrylamide and its derivatives that can even increase the effectiveness of IIP. The purpose of this study is to determine the potential of eugenol derivatives as selective adsorbents through the IIP method. This synthesis of IIP involved the use of basic ingredients of eugenol and its derivatives (polyeugenol, EOA, polyacetate). Each base material is contacted with a metal template then crosslinked with three kinds of crosslinking agents, namely EGDMA, DVB, and bisphenol. IIP is formed after the metal template is released using acid/HCl. The outcomes obtained demonstrate that the IIP method is able to increase the metal adsorption capacity and that the IIP method for metals is largely determined by the release of metals, which will form a hole for metal entry through adsorption. Poly-Cd-DVB, Eug-Cr-DVB, Poly-Cu-bisphenol, Polyacetate -Cr-DVB are polymer materials that have the potential to make up an IIP.
4

Chawla, Gunjan, und Gordon Drummond. „Water, strong ions, and weak ions“. Continuing Education in Anaesthesia Critical Care & Pain 8, Nr. 3 (Juni 2008): 108–12. http://dx.doi.org/10.1093/bjaceaccp/mkn017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Prakash, G. K. Surya, Mark R. Bruce und George A. Olah. „Onium ions. 30. Methyl- and ethylvinylhalonium ions“. Journal of Organic Chemistry 50, Nr. 13 (Juni 1985): 2405–6. http://dx.doi.org/10.1021/jo00213a050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rathore, Mukta, Ahmad Jahan Khanam und Vikas Gupta. „Studies on Synthesis and Ion Exchange Properties of Sulfonated Polyvinyl Alcohol/Phosphomolybdic Acid Composite Cation Exchanger“. Materials Science Forum 875 (Oktober 2016): 149–55. http://dx.doi.org/10.4028/www.scientific.net/msf.875.149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this study, sulfonated polyvinyl alcohol/phosphomolybdic acid composite cation exchange membrane was prepared by solution casting method. Some of the ionb exchange peroperties such as ion exchange capacity for alkali and alkali metal ions, effect of temperature on ion exchange capacity, elution behavior, effect of eluent concentration, distribution coefficient were studied. On the basis of selectivity coefficient values some important binary separation of heavy metal ion pairs such as Hg (II)-Zn (II), Hg (II)-Cd (II), Hg (II)-Ni (II) and Hg (II)-Cu (II) were carried out. It was observed that elution of heavy metal ions depends upon the metal-eluting ligand stability. Mercury remained in column for a longer time than that of other heavy metal ions. The separations are fairly sharp and recovery of Hg (II) ions is quantitative and reproducible.
7

Evano, Gwilherm, Morgan Lecomte, Pierre Thilmany und Cédric Theunissen. „Keteniminium Ions: Unique and Versatile Reactive Intermediates for Chemical Synthesis“. Synthesis 49, Nr. 15 (17.07.2017): 3183–214. http://dx.doi.org/10.1055/s-0036-1588452.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Keteniminium ions have been demonstrated to be remarkably useful and versatile reactive intermediates in chemical synthesis. These unique heterocumulenes are pivotal electrophilic species involved in a number of efficient and selective transformations. More recently, even more reactive ‘activated’ keteniminium ions bearing an additional electron-withdrawing group on the nitrogen atom have been extensively investigated. The chemistry of these unique reactive intermediates, including representative methods for their in situ generation, will be overviewed in this review article.1 Introduction2 The Chemistry of Keteniminium Ions3 The Chemistry of Activated Keteniminium Ions4 Keteniminium Ions: Pivotal Intermediates for the Synthesis of Natural and/or Biologically Relevant Molecules5 Conclusions and Perspectives
8

Miteva, T., J. Wenzel, S. Klaiman, A. Dreuw und K. Gokhberg. „X-Ray absorption spectra of microsolvated metal cations“. Physical Chemistry Chemical Physics 18, Nr. 25 (2016): 16671–81. http://dx.doi.org/10.1039/c6cp02606k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mann, K., und K. Rohr. „Differential measurement of the absolute ion yield from laser-produced C plasmas“. Laser and Particle Beams 10, Nr. 3 (September 1992): 435–46. http://dx.doi.org/10.1017/s0263034600006686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The ion flux produced by an obliquely incident Nd Q-switch pulse on a graphite target has been analyzed with regard to its kinetic energy, charge, and angular distribution. The laser intensity has been varied in a range between 109–5·1010 W/cm2, appropriate for many low-irradiance applications. It is observed that for ions of charge state n the emission cone of the number of ions scales with cos2n+1. The angular emission probability of the kinetic energy of the individual ions is found to be independent of their charge and scales as a cosine function. Due to the asymmetrical heating of the expanding plasma by the obliquely incident laser pulse, the maximum of emission is rotated away from the target normal toward the incoming laser, depending upon the ion's charge and the laser energy. The measured kinetic energy spectra are determined by the recombination during the plasma expansion: There are no low-energetic highly charged ions and no high-energetic lowly chargedions. If the laser energy (intensity) is enhanced, it is observed that the additional heating essentially serves only to increase the velocity of the higher charged ions; the energy of the individual singly charged ions is not altered.
10

Crary, F. J., und F. Bagenal. „Ion cyclotron waves, pickup ions, and Io's neutral exosphere“. Journal of Geophysical Research: Space Physics 105, A11 (01.11.2000): 25379–89. http://dx.doi.org/10.1029/2000ja000055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

KAJIYAMA, Tetsuto, Shohei SAKAI, Jun INOUE, Toru YOSHINO, Satoshi OHMURO, Kensuke ARAI und Hisao KOKUSEN. „Synthesis of a Metal Ion Adsorbent from Banana Fibers and Its Adsorption Properties for Rare Metal Ions“. Journal of Ion Exchange 27, Nr. 3 (2016): 57–62. http://dx.doi.org/10.5182/jaie.27.57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Chang, Christopher J. „Ions illuminated“. Nature 448, Nr. 7154 (08.08.2007): 654–55. http://dx.doi.org/10.1038/448654a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Clarke, Ronald J., und Xiaochen Fan. „Pumping ions“. Clinical and Experimental Pharmacology and Physiology 38, Nr. 11 (20.10.2011): 726–33. http://dx.doi.org/10.1111/j.1440-1681.2011.05590.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Stajic, J. „Periodic Ions“. Science 342, Nr. 6158 (31.10.2013): 537. http://dx.doi.org/10.1126/science.342.6158.537-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kochina, Tat'yana A., Dmitry V. Vrazhnov, Evgeniya N. Sinotova und Mikhail G. Voronkov. „Silylium ions“. Russian Chemical Reviews 75, Nr. 2 (28.02.2006): 95–110. http://dx.doi.org/10.1070/rc2006v075n02abeh002480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Carafoli, E. „Pumping Ions“. Science 262, Nr. 5138 (26.11.1993): 1461. http://dx.doi.org/10.1126/science.262.5138.1461-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Cocke, C. L., und R. E. Olson. „Recoil ions“. Physics Reports 205, Nr. 4 (Juni 1991): 153–219. http://dx.doi.org/10.1016/0370-1573(91)90072-t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kühlbrandt, Werner. „Pumping ions“. Nature Structural Biology 4, Nr. 10 (Oktober 1997): 773. http://dx.doi.org/10.1038/nsb1097-773.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Nieminen, Timo A. „Trapping ions“. Nature Photonics 4, Nr. 11 (November 2010): 737–38. http://dx.doi.org/10.1038/nphoton.2010.248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

HILLE, B. „Pumping Ions“. Science 255, Nr. 5045 (07.02.1992): 742. http://dx.doi.org/10.1126/science.255.5045.742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Werth, G. „Trapped ions“. Contemporary Physics 26, Nr. 3 (Mai 1985): 241–56. http://dx.doi.org/10.1080/00107518508223684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

MacLennan, David H., und N. Michael Green. „Pumping ions“. Nature 405, Nr. 6787 (Juni 2000): 633–34. http://dx.doi.org/10.1038/35015206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Müller, Hans. „Cluster Ions“. Zeitschrift für Physikalische Chemie 184, Part_1_2 (Januar 1994): 292–93. http://dx.doi.org/10.1524/zpch.1994.184.part_1_2.292a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Greenwell, Gregory. „Freezing Ions“. Scientific American 258, Nr. 3 (März 1988): 28. http://dx.doi.org/10.1038/scientificamerican0388-28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Tomazela, Daniela Maria, Adão A. Sabino, Regina Sparrapan, Fabio C. Gozzo und Marcos N. Eberlin. „Distonoid ions“. Journal of the American Society for Mass Spectrometry 17, Nr. 7 (Juli 2006): 1014–22. http://dx.doi.org/10.1016/j.jasms.2006.03.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Martin, S., A. Salmoun, R. Brédy, G. Montagne, J. Bernard, X. Ma und L. Chen. „Negative ions produced in multicharged ions and C60collisions“. Physica Scripta T144 (01.06.2011): 014022. http://dx.doi.org/10.1088/0031-8949/2011/t144/014022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Head, Nicholas J., Golam Rasul, Anjana Mitra, A. Bashir-Heshemi, G. K. Surya Prakash und George A. Olah. „Onium Ions. 44. Cubyl Onium Ions: Cubylcarboxonium, Cubylacylium, and Dimethyl Cubyl-1,4-dihalonium Ions“. Journal of the American Chemical Society 117, Nr. 49 (Dezember 1995): 12107–13. http://dx.doi.org/10.1021/ja00154a011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Zhu, Yuhua, Jianying Wang, Xiang Zhu, Jun Wang, Lijie Zhou, Jinhua Li, Tao Mei, Jingwen Qian, Lai Wei und Xianbao Wang. „Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions“. Analyst 144, Nr. 19 (2019): 5802–9. http://dx.doi.org/10.1039/c9an01287g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yamamura, Yasunori, Yoshiyuki Mizuno und Hidetoshi Kimura. „Angular distributions of sputtered atoms for low-energy heavy ions, medium ions and light ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 13, Nr. 1-3 (März 1986): 393–95. http://dx.doi.org/10.1016/0168-583x(86)90535-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Driess, Matthias, Christian Monsé, Klaus Merz und Christoph van Wüllen. „Perstannylated Ammonium and Phosphonium Ions: Organometallic Onium Ions That Are also Base-Stabilized Stannylium Ions“. Angewandte Chemie 39, Nr. 20 (16.10.2000): 3684–86. http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3684::aid-anie3684>3.0.co;2-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Blanco-Ania, Daniel, und Floris P. J. T. Rutjes. „Carbonylonium ions: the onium ions of the carbonyl group“. Beilstein Journal of Organic Chemistry 14 (04.10.2018): 2568–71. http://dx.doi.org/10.3762/bjoc.14.233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The nomenclature of cations R1C(=O+R3)R2 (R1, R2, R3 = H or organyl) has been examined and shown to be in a state of immeasurable confusion: a pragmatic recommendation is made that the generic term “carbonylonium ions” should be adopted for these intermediates, which comprises the terms “aldehydium” (R1 = H, R2, R3 = H or organyl) and “ketonium ions” (R1, R2 = organyl, R3 = H or organyl) for the corresponding aldehyde- and ketone-based intermediates, respectively.
32

Mair, C., T. Fiegele, F. Biasioli, R. Wörgötter, V. Grill, M. Lezius und T. D. Märk. „Surface-induced reactions of polyatomic ions and cluster ions“. Plasma Sources Science and Technology 8, Nr. 2 (01.01.1999): 191–202. http://dx.doi.org/10.1088/0963-0252/8/2/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kuznetsov, V. V., M. R. Pavlov, D. I. Zimakov, S. A. Chepeleva und V. N. Kudryavtsev. „Electroreduction of Molybdate Ions in Solutions Containing Ammonium Ions“. Russian Journal of Electrochemistry 40, Nr. 7 (Juli 2004): 711–15. http://dx.doi.org/10.1023/b:ruel.0000035253.18329.98.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Keesee, R. G., und A. W. Castleman. „Ions and cluster ions: Experimental studies and atmospheric observations“. Journal of Geophysical Research 90, Nr. D4 (1985): 5885. http://dx.doi.org/10.1029/jd090id04p05885.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bahati, E. M., R. D. Thomas, C. R. Vane und M. E. Bannister. „Electron-impact dissociation of D13CO+molecular ions to13CO+ions“. Journal of Physics B: Atomic, Molecular and Optical Physics 38, Nr. 11 (20.05.2005): 1645–55. http://dx.doi.org/10.1088/0953-4075/38/11/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ganetsos, Th, G. L. R. Mair, C. J. Aidinis und L. Bischoff. „Characteristics of erbium-ions-producing liquid metal ions sources“. Physica B: Condensed Matter 340-342 (Dezember 2003): 1166–70. http://dx.doi.org/10.1016/j.physb.2003.09.093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Joshi, B. C., und M. C. Joshi. „Sensitizing Pr3+ ions by Tm3+ ions in phosphate glass“. Journal of Non-Crystalline Solids 142 (Januar 1992): 171–74. http://dx.doi.org/10.1016/s0022-3093(05)80021-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hanway, Patrick J., und Arthur H. Winter. „Phenyloxenium Ions: More Like Phenylnitrenium Ions than Isoelectronic Phenylnitrenes?“ Journal of the American Chemical Society 133, Nr. 13 (06.04.2011): 5086–93. http://dx.doi.org/10.1021/ja1114612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Harrison, Alex G., Alex B. Young, Martina Schnoelzer und Béla Paizs. „Formation of iminium ions by fragmentation of a2 ions“. Rapid Communications in Mass Spectrometry 18, Nr. 14 (23.07.2004): 1635–40. http://dx.doi.org/10.1002/rcm.1532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Lork, Enno, Dieter Böhler und Rüdiger Mews. „Fluorophosphazenate Ions: A Route to Complexation of Fluoride Ions“. Angewandte Chemie International Edition in English 34, Nr. 2324 (05.01.1996): 2696–98. http://dx.doi.org/10.1002/anie.199526961.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Petkova, Petya. „TETRAHEDRAL COMPLEX OF Cr3+ AND Cr4+ IONS IN Bi12SiO20“. Journal scientific and applied research 2, Nr. 1 (10.10.2012): 58–65. http://dx.doi.org/10.46687/jsar.v2i1.44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Absorption measurement is taken in the visible spectral region (650 – 1300 nm). The dopants Cr3+ and Cr4+ ions occupy the tetrahedral sites in the crystal lattice of doped sillenite. The energy level structure of these ions in Bi12SiO20:Cr (BSO:Cr) are presented. The Dq-, B- and C-parameters of the crystal field theory for the Cr3+ and Cr4+ ions were obtained. The spin-coupling energy is also calculated for the chromium ions.
42

Mahmood, Aras S. „Visual Investigation of the Radial Energy Distribution of the Ions Produced by a Low Pressure Saddle Field Ion Source“. Journal of Zankoy Sulaimani - Part A 5, Nr. 1 (02.12.2000): 37–42. http://dx.doi.org/10.17656/jzs.10087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

NOHMI, Takashi, und Yoshio KOBAYASHI. „Ions and Arson.“ Journal of the Mass Spectrometry Society of Japan 47, Nr. 6 (1999): 329–39. http://dx.doi.org/10.5702/massspec.47.329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Gedalin, Michael, Nikolai V. Pogorelov und Vadim Roytershteyn. „Backstreaming Pickup Ions“. Astrophysical Journal 910, Nr. 2 (01.04.2021): 107. http://dx.doi.org/10.3847/1538-4357/abe62c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Trassin, Morgan, und John T. Heron. „Switching with ions“. Nature Nanotechnology 16, Nr. 9 (29.07.2021): 953–54. http://dx.doi.org/10.1038/s41565-021-00938-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Thomsen, D. E. „Accelerating Ions Collectively“. Science News 128, Nr. 17 (26.10.1985): 261. http://dx.doi.org/10.2307/3970009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Crew, E. W. „Movements of ions“. Electronics and Power 31, Nr. 11-12 (1985): 804. http://dx.doi.org/10.1049/ep.1985.0478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Aspden, H. „Movement of ions“. Electronics and Power 32, Nr. 3 (1986): 202. http://dx.doi.org/10.1049/ep.1986.0135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Sias, Carlo. „Making ions cooler“. Nature Physics 16, Nr. 4 (03.02.2020): 378–79. http://dx.doi.org/10.1038/s41567-019-0773-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Stoyanov, Evgenii S., Irina V. Stoyanova, Fook S. Tham und Christopher A. Reed. „Dialkyl Chloronium Ions“. Journal of the American Chemical Society 132, Nr. 12 (31.03.2010): 4062–63. http://dx.doi.org/10.1021/ja100297b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie