Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ionizing effects“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ionizing effects" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ionizing effects"
Wagner, Louis K., Patricia Eifel und Richard Geise. „Effects of Ionizing Radiation“. Journal of Vascular and Interventional Radiology 6, Nr. 6 (November 1995): 988–89. http://dx.doi.org/10.1016/s1051-0443(95)71232-5.
Der volle Inhalt der QuelleWong, F. C., und E. E. Kim. „Medical Effects of Ionizing Radiation“. Journal of Nuclear Medicine 50, Nr. 12 (12.11.2009): 2090. http://dx.doi.org/10.2967/jnumed.109.069864.
Der volle Inhalt der QuelleGuleria, Ravinder. „Harmful Effects of Ionizing Radiation“. International Journal for Research in Applied Science and Engineering Technology 7, Nr. 12 (31.12.2019): 887–89. http://dx.doi.org/10.22214/ijraset.2019.12141.
Der volle Inhalt der QuelleBoice, John D., Robert W. Miller, Fred A. Mettler und Arthur C. Upton. „Medical Effects of Ionizing Radiation“. Radiation Research 144, Nr. 1 (Oktober 1995): 121. http://dx.doi.org/10.2307/3579246.
Der volle Inhalt der QuelleFry, R. J. M., und S. A. Fry. „Health Effects of Ionizing Radiation“. Medical Clinics of North America 74, Nr. 2 (März 1990): 475–88. http://dx.doi.org/10.1016/s0025-7125(16)30574-0.
Der volle Inhalt der QuelleDie Schriftleitung. „Medical Effects of ionizing radiation“. Zeitschrift für Medizinische Physik 7, Nr. 3 (1997): 202. http://dx.doi.org/10.1016/s0939-3889(15)70260-6.
Der volle Inhalt der QuelleCoggle, J. E. „Medical Effects of Ionizing Radiation“. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 50, Nr. 4 (Januar 1986): 755. http://dx.doi.org/10.1080/09553008614551151.
Der volle Inhalt der QuelleSheaff, Michael, und Suhail Baithun. „Pathological effects of ionizing radiation“. Current Diagnostic Pathology 4, Nr. 2 (Juni 1997): 106–15. http://dx.doi.org/10.1016/s0968-6053(05)80090-0.
Der volle Inhalt der QuelleAngle, J. Fritz. „Medical Effects of Ionizing Radiation“. Journal of Vascular and Interventional Radiology 19, Nr. 11 (November 2008): 1675. http://dx.doi.org/10.1016/j.jvir.2008.07.018.
Der volle Inhalt der QuelleKrymskii, G. F., V. V. Kolosov und I. S. Tyryshkin. „Vapor condensation under ionizing effects“. Atmospheric and Oceanic Optics 24, Nr. 2 (April 2011): 218–21. http://dx.doi.org/10.1134/s1024856011020102.
Der volle Inhalt der QuelleDissertationen zum Thema "Ionizing effects"
Hasan, N. M. „Effects of ionizing radiation on biomolecules“. Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234702.
Der volle Inhalt der QuelleBarbary, O. M. „Effects of ionizing radiation on lipids“. Thesis, University of Salford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372135.
Der volle Inhalt der QuelleBagatin, Marta. „Effects of Ionizing Radiation in Flash Memories“. Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3426925.
Der volle Inhalt der QuelleLe memorie a semiconduttore che operano al livello del mare sono costantemente bombardate dalla radiazione ionizzante. Particelle alfa, emesse dai contaminanti radioattivi che sono inevitabilmente presenti nei materiali dei componenti e delle saldature, possono raggiungere le aree sensibili dei chip e generare cambiamenti indesiderati dello stato logico dei bit di memoria. Inoltre, una continua pioggia di neutroni causata dalle interazioni dei raggi cosmici con gli strati esterni dell’atmosfera costituisce una seria minaccia per il corretto funzionamento dell’elettronica in ambiente terrestre. L'elettronica che opera nello spazio deve funzionare in un ambiente ancora più critico dal punto di vista delle radiazioni ionizzanti, data la presenza massiccia di protoni, elettroni e ioni pesanti. Le memorie Flash sono sensibili agli effetti di radiazione. Essendo componenti sfaccettati, con blocchi funzionali eterogenei, la loro risposta alle radiazioni ionizzanti è variegata e talvolta la sua interpretazione può risultare complessa. Le SRAM, dal canto loro, sono il benchmark più comune per valutare la sensibilità al soft error di una data generazione tecnologica CMOS, nonchè dispositivi presenti virtualmente in tutti i circuiti integrati, non da ultimo nel page buffer delle memorie Flash. Questo lavoro di tesi contiene dei contributi originali nel campo degli effetti delle radiazioni sulle memorie Flash e SRAM. E’ stato effettuato uno studio completo, sperimentale e teorico, di memorie Flash commerciali, usando raggi x, ioni pesanti e neutroni, per simulare sia l’ambiente spaziale che quello terrestre. Per quanto riguarda gli effetti di dose totale, si studiano le diverse dosi di fallimento della matrice di celle Floating Gate, delle pompe di carica e del decoder di riga, irraggiando selettivamente i vari blocchi funzionali del dispositivo, in contrasto con la metodologia più comune di esporre alla radiazione l’intero chip. Nel Capitolo 3, dedicato agli effetti da evento singolo, si chiarisce il ruolo del page buffer nel determinare la sensibilità a ioni pesanti di una memoria NAND, studiando anche la dipendenza dei diversi tipi di errori (page buffer vs celle Floating Gate) dalle condizioni operative del dispositivo. Si propone quindi una ‘sezione d’urto efficace’ allo scopo di tenere conto di questi parametri. Negli ultimi anni sono stati discussi gli effetti di annealing post-irraggiamento degli errori osservati nelle celle Floating Gate, ma, apparentemente, le spiegazioni fornite collidevano con le teorie di perdita di carica dal Floating Gate. In questo lavoro di tesi si presentano risultati nuovi su questo fronte (Capitolo 4), che dimostrano come le teorie di perdita e intrappolamento di carica nel Floating Gate possano in realtà coesistere e spiegare in modo efficace i dati sperimentali. Il Capitolo 5 mostra, per la prima volta, che i neutroni atmosferici sono in grado di indurre errori in memorie Flash avanzate, cosa che fino a poco fa si riteneva possibile solo per memorie SRAM e DRAM. Questi risultati rivelano l’importanza di una nuova tematica connessa all’uso questi dispositivi in ambito terrestre. Infine, il Capitolo 6 illustra i fattori principali che determinano la dipendenza dalla temperatura del tasso di soft error in una memoria SRAM. Si presentano i risultati sperimentali, di simulazioni SPICE e modellizzazione analitica, per evidenziare la complessa miscela di parametri in gioco, molti dei quali fortemente dipendenti dalle caratteristiche tecnologiche del dispositivo.
Travis, Neil. „Effects of ionizing radiation on diaphyseal cortical bone“. Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181666404/.
Der volle Inhalt der QuelleBrucoli, Matteo. „Total ionizing dose monitoring for mixed field environments“. Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS093/document.
Der volle Inhalt der QuelleThe Total Ionizing Dose (TID) monitoring is nowadays a crucial task for a wide range of applications running in harsh radiation environments. In view of the High-Luminosity upgrade for the Large Hadron Collider, the monitoring of radiation levels along the CERN’s accelerator complex will become even more challenging. To this extent, a more detailed knowledge of the radiation field in the accelerator tunnel and its adjacent areas becomes necessary to design installation, relocation or shielding requirements of electronics sensitive to radiation. Aiming to improve the monitoring of the TID delivered by the mixed radiation field generated within the accelerator system, investigations on new suitable dosimeters have been carried out.With this research, two devices have been studied and characterized to be employed as dosimeter and possibly to complete the use of the silicon sensor currently employed at CERN for TID monitoring, i.e. the RADiation-sensitive Field Effect Transistor (RADFET): a commercial NMOS, and an ASIC (Application-Specific Integrated Circuit) named FGDOS. The devices have been selected following two opposite approaches: on the one hand, reducing the costs would allow the density of the deployed sensors to increase. As a direct consequence, a more detailed dose map would be obtained for large distributed systems like the LHC. On the other hand, the radiation monitoring can be further improved by deploying more sensitive detectors, which would allow to measure the dose where the levels are too low for the RADFET. Moreover, sensors with higher resolution would permit the characterization of the radiation field in a shorter time, which means within a lower integrated luminosity.The first approach has been accomplished by searching for alternative solutions based on COTS (Commercial Off-The-Shelf) devices, which would significantly reduce the costs and guarantee unlimited availability on the market. For this aim, investigations on a commercial discrete NMOS transistor, which was found to be very sensitive to the radiation, has been carried out.The need for improving the resolution of TID monitoring led to investigate the FGDOS, which is an innovative silicon dosimeter with a very high sensitivity that permits to detect extremely low doses.The calibration of the NMOS and the FGDOS have been performed by exposing the dosimeters to γ-ray. Their radiation response has been characterized in terms of linearity, batch-to-batch variability, and dose rate effect. The influence of the temperature has been studied and a method to compensate the temperature effect has been developed and implemented.Being the FGDOS is a System-On-Chip with several features that make the dosimeter an extremely flexible system, the characterization of its operational modes (Active, Passive and Autonomous) have been performed. Following the first characterization, some questions arose concerning the sensitivity degradation mechanisms affecting the dosimeter. To investigate this phenomenon, radiation experiments were performed with a test chip embedding only the radiation sensitive circuit of the FGDOS. The analysis of the experiments allowed the understating of the processes responsible for the sensitivity degradation, by separating the contribution of the reading transistor and the floating gate capacitor. The results of this investigation led us to considerer new design solution and compensation methods.The suitability of the NMOS and the FGDOS for TID measurement in the mixed radiation field produced by the CERN’s accelerator complex has been verified by performing accelerated radiation tests at the Cern High energy AcceleRator Mixed field facility (CHARM). The consistency of both sensors with the RADFET measurement has been demonstrated. The high sensitivity of the FGDOS leads to a significant improvement in terms of TID measurement in mixed radiation fields with respect to the RadFET, especially for low radiation intensities
Nguyen, Vinh. „Late Effects of Ionizing Radiation on Normal Microvascular Networks“. View the abstract Download the full-text PDF version, 1999. http://etd.utmem.edu/ABSTRACTS/1999-001-nguyen-index.html.
Der volle Inhalt der QuelleTitle from title page screen (viewed on October 17, 2008). Research advisor: Mohammad F. Kiani. Document formatted into pages (xi, 67 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 55-67).
Gasperin, Alberto. „Advanced Non-Volatile Memories: Reliability and Ionizing Radiation Effects“. Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425599.
Der volle Inhalt der QuelleMacPhail, Susan Helen. „Effect of intercellular contact on radiation-induced DNA damage“. Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27986.
Der volle Inhalt der QuelleMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Staaf, Elina. „Cellular effects after exposure to mixed beams of ionizing radiation“. Doctoral thesis, Stockholms universitet, Institutionen för genetik, mikrobiologi och toxikologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-80809.
Der volle Inhalt der QuelleAt the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper nr 3: Manuscript; Paper nr 4: Manuscript.
DNA damage and repair in cells exposed to mixed beams of radiation
MacQueen, Daniel Montgomery. „Total ionizing dose effects on Xilinx field-programmable gate arrays“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ59840.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Ionizing effects"
Pathak, Bhawani. Health effects of ionizing radiation. 2. Aufl. Hamilton, Ontario: Canadian Centre for Occupational Health and Safety, 1994.
Den vollen Inhalt der Quelle findenA, Mettler Fred. Medical effects of ionizing radiation. 2. Aufl. Philadelphia: W.B. Saunders, 1995.
Den vollen Inhalt der Quelle finden1924-, Moseley Robert D., Hrsg. Medical effects of ionizing radiation. Orlando, FL: Grune & Stratton, 1985.
Den vollen Inhalt der Quelle finden1923-, Upton Arthur C., Hrsg. Medical effects of ionizing radiation. 3. Aufl. Philadelphia, PA: Saunders / Elsevier, 2008.
Den vollen Inhalt der Quelle findenShirley, Lehnert, Hrsg. Biomolecular action of ionizing radiation. New York: Taylor & Francis, 2007.
Den vollen Inhalt der Quelle findenAlexandrou, Konstantinos. Ionizing Radiation Effects on Graphene Based Field Effects Transistors. [New York, N.Y.?]: [publisher not identified], 2016.
Den vollen Inhalt der Quelle findenHumans, IARC Working Group on the Evaluation of Carcinogenic Risks to. Non-ionizing radiation. Lyon, France: IARC Press, 2002.
Den vollen Inhalt der Quelle findenUnited States. Defense Nuclear Agency., Hrsg. Effects of ionizing radiation on auditory and visual thresholds. Alexandria, VA: Defense Nuclear Agency, 1992.
Den vollen Inhalt der Quelle findenUnited States. Defense Nuclear Agency., Hrsg. Effects of ionizing radiation on auditory and visual thresholds. Alexandria, VA: Defense Nuclear Agency, 1992.
Den vollen Inhalt der Quelle findenP, Ma T., und Dressendorfer Paul V, Hrsg. Ionizing radiation effects in MOS devices and circuits. New York: Wiley, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ionizing effects"
Horneck, Gerda. „Ionizing Radiation, Biological Effects“. In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_806-3.
Der volle Inhalt der QuelleHorneck, Gerda. „Ionizing Radiation, Biological Effects“. In Encyclopedia of Astrobiology, 1255. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_806.
Der volle Inhalt der QuelleFuger, Jean. „Effects of Ionizing Radiations“. In Th Thorium, 191–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-07410-7_4.
Der volle Inhalt der QuelleHorneck, Gerda. „Ionizing Radiation (Biological Effects)“. In Encyclopedia of Astrobiology, 845. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_806.
Der volle Inhalt der QuelleHorneck, Gerda. „Ionizing Radiation, Biological Effects“. In Encyclopedia of Astrobiology, 1518. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_806.
Der volle Inhalt der QuelleWood, Andrew. „Possible Low-Level Radiofrequency Effects“. In Non-ionizing Radiation Protection, 239–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119284673.ch16.
Der volle Inhalt der QuelleFoster, Kenneth R. „Thermal Effects of Microwave and Radiofrequency Radiation“. In Non-ionizing Radiation Protection, 163–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119284673.ch12.
Der volle Inhalt der QuelleElgazzar, Abdelhamid H. „Biological Effects of Ionizing Radiation“. In Synopsis of Pathophysiology in Nuclear Medicine, 329–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03458-4_15.
Der volle Inhalt der QuelleUpton, Arthur C. „Carcinogenic Effects of Ionizing Radiation“. In Mechanisms of Carcinogenesis, 54–70. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2526-7_7.
Der volle Inhalt der QuelleElgazzar, Abdelhamid H., und Nafisa Kazem. „Biological Effects of Ionizing Radiation“. In The Pathophysiologic Basis of Nuclear Medicine, 715–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06112-2_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ionizing effects"
Bourdarie, S., C. Inguimbert, J. R. Vaille, P. Calvel, A. Sicard-Piet, D. Falguere, E. Lorfevre, R. Ecoffet und C. Poivey. „Benchmarking ionizing space environment models“. In 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2016. http://dx.doi.org/10.1109/radecs.2016.8093135.
Der volle Inhalt der QuelleNaceur, M., A. D. Touboul, M. Gedion, J. R. Vaille, F. Wrobel, E. Lorfevre, F. Bezerra, G. Chaumont und F. Saigne. „Synergy of non-ionizing and ionizing processes in the reliability degradation of Power MOSFETs oxide“. In 2011 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2011. http://dx.doi.org/10.1109/radecs.2011.6131372.
Der volle Inhalt der QuelleWitczak, Steven C., Jeremiah J. Horner, David C. Harms, Todd S. Mason, Kristin E. Marino und Glen E. Macejik. „Ionizing Radiation Response of the 4558 Analog Processor / Analog-to-Digital Converter“. In 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115442.
Der volle Inhalt der QuelleGadlage, Matthew J., Matthew J. Kay, David I. Bruce, Austin H. Roach, Adam R. Duncan, Aaron M. Williams und J. David Ingalls. „Total Ionizing Dose Effects in Commercial Floating-Gate-Alternative Non-Volatile Memories“. In 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115457.
Der volle Inhalt der QuelleChavez, R., B. Rax und A. Johnston. „Total Ionizing Dose Effects and Bias Dependence in Selected Bipolar Devices“. In 2006 IEEE Radiation Effects Data Workshop. IEEE, 2006. http://dx.doi.org/10.1109/redw.2006.295467.
Der volle Inhalt der QuelleSimova, Eli, und Paul A. Rochefort. „Ionizing Radiation Effects in Non-Radiation-Tolerant Commercial Video Cameras“. In 2015 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2015. http://dx.doi.org/10.1109/redw.2015.7336719.
Der volle Inhalt der QuellePrahardi, R., und Arundito Widikusumo. „Zero Dose“. In Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.
Der volle Inhalt der QuelleSlimani, Mariem, Jean-Marc Armani und Remi Gaillard. „Evaluation of Total Ionizing Dose Effects on Commercial FRAMs“. In 2018 IEEE Nuclear & Space Radiation Effects Conference (NSREC 2018). IEEE, 2018. http://dx.doi.org/10.1109/nsrec.2018.8584287.
Der volle Inhalt der QuelleAksteiner, N., und J. Budroweit. „Total Ionizing Dose Effects on Current Sense Amplifiers“. In 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2021. http://dx.doi.org/10.1109/radecs53308.2021.9954538.
Der volle Inhalt der QuelleGriffiths, Benjamin J., Timothy R. Oldham und Chad M. Whitney. „Compendium of Ball Aerospace Total Ionizing Dose Test Results“. In 2018 IEEE Nuclear & Space Radiation Effects Conference (NSREC 2018). IEEE, 2018. http://dx.doi.org/10.1109/nsrec.2018.8584269.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ionizing effects"
Little, John B. Bystander Effects of Ionizing Radiation. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1339440.
Der volle Inhalt der QuelleKraner, H. W., R. Beuttenmuller, W. Chen, J. A. Kierstead, Z. Li, Y. Zhang, L. Dou, E. Fretwurst und G. Lindstroem. Ionizing radiation effects on silicon test structures. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10119896.
Der volle Inhalt der QuelleMartz, Jr ,. H. E., und G. E. Jones. Calculations of Health Effects from Ionizing Radiation CAARS Program. US: Lawrence Livermore National Laboratory (LLNL), Livermore, CA, Oktober 2006. http://dx.doi.org/10.2172/898432.
Der volle Inhalt der QuelleMarsh, S. F., und K. K. S. Pillay. Effects of ionizing radiation on modern ion exchange materials. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10189480.
Der volle Inhalt der QuelleWoloschak, G. E., P. Felcher und Chin-Mei Chang-Liu. Combined effects of ionizing radiation and cycloheximide on gene expression. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10103819.
Der volle Inhalt der QuelleWirtenson, G. R., und R. H. White. Effects of ionizing radiation on selected optical materials: An overview. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/10178461.
Der volle Inhalt der QuelleWebster, Edward W., A. B. Ashare, R. J. Baker, A. B. Brill, C. C. Chamberlain, R. O. Gorson, E. C. Gregg et al. A Primer on Low-Level Ionizing Radiation and Its Biological Effects. AAPM, 1986. http://dx.doi.org/10.37206/17.
Der volle Inhalt der QuelleDore, M. A., und G. H. Anno. Effects of Ionizing Radiation on the Performance of Selected Tactical Combat Crews. Fort Belvoir, VA: Defense Technical Information Center, Mai 1990. http://dx.doi.org/10.21236/ada222880.
Der volle Inhalt der QuelleBlaylock, B. (The effects of ionizing radiation on terrestrial and freshwater organisms and ecosystems). Office of Scientific and Technical Information (OSTI), Februar 1988. http://dx.doi.org/10.2172/5650530.
Der volle Inhalt der QuelleFleetwood, D. M. Total ionizing dose effects on MOS and bipolar devices in the natural space radiation environment. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/10160345.
Der volle Inhalt der Quelle