Dissertationen zum Thema „Ionic Solids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Ionic Solids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Swaminathan, Narasimhan. „Stress-defect transport interactions in ionic solids“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28273.
Der volle Inhalt der QuelleCommittee Chair: Qu, Jianmin; Committee Member: Kohl,Paul A.; Committee Member: Liu, Meilin; Committee Member: McDowell, David L.; Committee Member: Zhu, Ting.
Melle-Franco, Manuel. „Computer simulation of ionic solids of technological interest“. Thesis, University of Kent, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327447.
Der volle Inhalt der QuelleZachariah, Manesh. „Electronic & ionic conduction & correlated dielectric relaxations in molecular solids“. Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404446.
Der volle Inhalt der QuelleEl estudio de los materiales cristalinos juega un papel destacado en la física del estado sólido. Sin embargo, los materiales desordenados son más abundantes en la naturaleza que los cristalinos y, además, muchas de las aplicaciones prácticas utilizan materiales que son débilmente o fuertemente desordenados, como vidrios, líquidos, cristales plásticos, cristales moleculares, polímeros, o cristales líquidos. Desde un punto de vista fundamental, aún carecemos de una comprensión de de los materiales desordenados y de la transición vítrea: la comprensión de las propiedades asociadas desorden requiere el uso de conceptos que se alejan de los aplicables al estado cristalino. Desde una perspectiva aplicada, la investigación en los sólidos desordenados está promovida por la importancia tecnológica de estos materiales en la vida cotidiana. Los sólidos desordenados pueden conducir electricidad por transporte de electrones o de iones. En el primer caso, los materiales desordenados muestran menor conductividad que sus respectivas fases cristalinas, debido a la localización de los electrones de conducción por la existencia de desorden, que da lugar a saltos de electrones como principal mecanismo de transporte de carga. Por otro lado, el mismo desorden puede permitir la difusión de iones a través de intersticios; la conductividad iónica de materiales desordenados es más alta que sus fases homólogas cristalinas. Esta tesis presenta un estudio experimental de la conducción eléctrica y de la dinámica molecular de sólidos moleculares formados por derivados de fullereno (C60Br6, C60(ONa)24) o por moléculas con dos grupos nitrilos (succinonitrila (C2H4(CN)2), glutaronitrila (C3H6 (CN)2)). Estos materiales presentan, según el caso, conducción electrónica, protónica, o iónica. La tesis analiza los diferentes tipos de conducción de carga en materiales moleculares así como los procesos físicos relacionados, tales como las relajaciones de carga espacial. En el material C60Br6 observamos conducción electrónica tipo n y un comportamiento de fase no trivial. La dependencia de la conductividad con la temperatura está de acuerdo con el modelo de salto de rango variable (VRH). El C60(ONa)24 tiene un comportamiento de fase aún más rico. Se sintetiza como un hidrato policristalino, y se puede obtener como material puro por calentamiento. Mientras que el material puro es un semiconductor de tipo n, su exposición a una atmósfera húmeda aumenta la conductividad de forma dramática debido al transporte de carga a través de las capas de hidratación, lo que probablemente se debe a un mecanismo de intercambio de protones como en el agua pura o en el hielo. La conductividad del hidrato depende fuertemente de la temperatura en el proceso de deshidratación. Ambas formas, pura e hidratada, muestran un proceso dinámico asociado a la acumulación de electrones en los límites de grano. La presencia de agua tiene un fuerte impacto en tal proceso. Por último se analizan la dinámica molecular y la conductividad iónica de cristales plásticos, en particular, de las aleaciones moleculares en fase plástica formadas entre la succinonitrila y la glutaronitrila. En las fases plásticas las moléculas ocupan los sitios cristalográficos de la red, pero se encuentran orientacionalmente desordenadas. Se demuestra que las aleaciones succinonitrila-glutaronitrila son los primeros cristales plásticos que se conocen en los que existe una correlación perfecta entre la corriente de iones y la dinámica reorientational de las moléculas en los sitios cristalográficos. El dopaje de las aleaciones con sales de Li aumenta la conductividad pero destruye la correlación anterior, lo que indica que la correlación sólo es válida cuando el transporte de carga está dominado por la difusión de iones moleculares. Tal correlación puede ser consecuencia de una correlación entre las escalas de tiempo de rotación y de difusión.
Datta, Biswajit. „Exploration of miscellaneous interfaces of some ionic solids and ionic liquids Prevailing in various solvent systems by the process of psysicochemical contrivance“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2673.
Der volle Inhalt der QuelleBurgess, Kevin. „Solid-State Nuclear Magnetic Resonance of Exotic Quadrupolar Nuclei as a Direct Probe of Molecular Structure in Organic Ionic Solids“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31971.
Der volle Inhalt der QuelleSwartz, Charles W. „First Principles Calculations for Liquids and Solids Using Maximally Localized Wannier Functions“. Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/274283.
Der volle Inhalt der QuellePh.D.
The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can be further engineered in the PbTiO 3 /SrTiO 3 superlattice and an interface enhancement of piezoelectricity is found in the BaTiO 3 /CaTiO 3 superlattice. The second project will look at The ionization potential distributions of hydrated hydroxide and hydronium which are computed within a many-body approach for electron excitations using configurations generated by ab initio molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by solvent water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions. The third project represents a work in progress, where we also make use of the previous electron excitation theory applied to ab initio x-ray emission spectroscopy. In this case we make use of a novel method to include the ultrafast core-hole electron dynamics present in such situations. At present we have shown only strong qualitative agreement with experiment.
Temple University--Theses
Mbogo, Francis Njagi. „Vibrational spectroscopy and latent symmetry effects in metal tricarbonyls and ionic solids : and dynamics of unusually H-bonded systems“. Thesis, University of East Anglia, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304529.
Der volle Inhalt der QuelleShakhov, Alexander. „Structure-Dynamics Relationships in Complex Fluids and Disordered Porous Solids Assessed using NMR“. Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-153105.
Der volle Inhalt der QuelleCastillo, Adriana. „Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX107/document.
Der volle Inhalt der QuelleOne of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials
Mu, Xiaoke [Verfasser], Hans-Joachim [Akademischer Betreuer] Kleebe und Peter A. van [Akademischer Betreuer] Aken. „TEM study of the structural evolution of ionic solids from amorphous to polycrystalline phases in the case of alkaline earth difluoride systems: Experimental exploration of energy landscape / Xiaoke Mu. Betreuer: Hans-Joachim Kleebe ; Peter A. van Aken“. Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1107771218/34.
Der volle Inhalt der QuelleSaha, Sujoy. „Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries“. Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.
Der volle Inhalt der QuelleGrowing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Yousif, F. N. „Core excitons in ionic systems“. Thesis, University of York, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377291.
Der volle Inhalt der QuelleYoung, Kevin Edward. „Ionic conductivity in silicate - containing solid electrolytes“. Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335654.
Der volle Inhalt der QuelleRageb, Shakir Mahmud. „Ionic transport in lithium salts and composites“. Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278268.
Der volle Inhalt der QuelleAvala, Usha Kranthi. „Ionic Conductivity in Non-Ionic Compounds“. TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1279.
Der volle Inhalt der QuelleHarris, Mark Jonathan. „Phase transitions in related ionic nitrates and carbonates“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386688.
Der volle Inhalt der QuelleChen, Jing. „Solution and solid state interactions between ionic [pi]-systems“. Lexington, Ky. : [University of Kentucky Libraries], 2006. http://lib.uky.edu/ETD/ukychem2006d00388/DISSERTATION%5FJING%5FCHEN.pdf.
Der volle Inhalt der QuelleTitle from document title page (viewed on March 28, 2006). Document formatted into pages; contains xiv, 167 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 128).
Chen, Jing. „SOLUTION AND SOLID STATE INTERACTIONS BETWEEN IONIC π-SYSTEMS“. UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/289.
Der volle Inhalt der QuelleOleksy, Anna. „Wetting transitions of ionic solutions at charged solid substrates“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611681.
Der volle Inhalt der QuelleHjalmarsson, Nicklas. „Ionic liquids : The solid-liquid interface and surface forces“. Doctoral thesis, KTH, Yt- och korrosionsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186267.
Der volle Inhalt der QuelleJonvätskor möjliggör nya tillvägagångssätt för att kontrollera interaktioner vid gränsskiktet mellan fasta ytor och vätskor. Jonvätskor definieras som vätskor som består av stora och asymmetriska joner med en smältpunkt under 373 K. På grund av sin amfifila karaktär är de starka lösningsmedel men har också andra intressanta egenskaper. Jonvätskor kan till exempel självorganisera sig och attraheras till ytor på grund av sin laddning. En följd av detta är att de bildar nanostrukturer både i bulk och på ytor. Denna avhandling beskriver hur gränsskiktet mellan fasta ytor och jonvätskor svarar på yttre påverkan såsom en ökning i temperatur, tillsättning av ett salt samt polarisering. En ökad förståelse för hur dessa faktorer styr ytkompositionen av jonvätskor kan bidra med verktyg för att kontrollera system till specifika applikationer såsom friktion. Normala- och friktionskrafter mäts för etylammonium nitrat (EAN) mellan en glimmeryta och en kolloidprob vid olika temperaturer eller saltkoncentrationer. Resultaten visar att en ökning av temperatur eller låga koncentrationer av tillsatt salt bara marginellt framkallar ändringar i strukturen på gränsytan och att det adsorberade lagret förblir intakt. När saltkoncentrationen emellertid var tillräckligt hög får den mindre litiumjonen överhanden och ytsammansättningen ändras. Ytlagret av en liknande jonvätska undersöks också vid tillsättning av salt och resultaten avslöjar att litiumjoner påverkar ytsammansättningen annorlunda beroende på jonstrukturen av jonvätskan. Detta visar att ytselektiviteten starkt beror på jonkemin. En repulsiv dubbellagerkraft yttrar sig anmärkningsvärt för EAN vid 393 K vilket inte observeras vid lägre temperaturer. Detta indikerar en ändring i EANs mikroskopiska sammansättningsbeteende och har generella återverkningar för hur jonvätskor uppfattas. En ny metod har utvecklats baserad på en kvartskristall mikrovåg för att undersöka hur ytsammansättningen av jonvätskor reagerar på polarisering. Denna metod visar att det adsorberade lagret av både en ren jonvätska och en jonvätska löst i olja kan kontrolleras genom att applicera spänningar med olika tecken och storlekar. Dessutom möjliggör metoden två oberoende tillvägagångssätt för att övervaka laddningarna under polarisering vilket kan användas för att kvantifiera ytsammansättningen. Tekniken ger också information om jonkinetik och ytselektivitet. Detta arbete bidrar till den grundläggande förståelsen av gränsskiktet mellan fasta ytor och jonvätskor och visar att ytsammansättningen av jonvätskor kan kontrolleras och övervakas med olika tillvägagångssätt.
QC 20160518
Martins, Dália Teresa Al-Alavi. „Compact ion-source based on superionic rubidium silver iodide (RbAg4I5) solid electrolyte“. Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11037.
Der volle Inhalt der QuelleA compact ion-beam source based on rubidium silver iodide (RbAg4I5) solid electrolyte, deposited on a sharpened silver tip, has been developed and studied. Through an accelerating potential above 10 kV, established between emitter and collector, silver positive ions move through the electrolyte towards the emitting surface, where they are emitted from and accelerated. Via partial redox reaction occurring at the silver/RbAg4I5 interface, silver atoms are oxidised into Ag+ ions and migrate into the electrolyte, compensating the loss of emitted ions in the apex region. The emitted ions are collected by a Faraday cup, producing an electric current in the level of tens picoamperes. It was found that silver ions (atomic or clustered) make a major contribution to the measured ion current, although rubidium ions were also detected with concentration in six times lower than silver. The apex diameters of the final emitters were estimated in the range of 4-9 μm. The highest stable current was produced by an emitter whose apex diameter corresponds to 8.2 ± 0.5 μm. This current remained in the level of 20-25 pA for nearly 90 minutes and it was obtained at 92ºC, using an extraction voltage of 20 kV. Furthermore, it was observed that the current increased exponentially with temperature and linearly with applied voltage, at least for temperatures below 150 ºC and voltages in the range of 10-22 kV. Dependence on the apex diameter was not studied, since the RbAg4I5 film deposited on silver tips was not totally uniform. Several improvements should be performed to optimize the deposition methods, the design of heating system and methodology of the measurements (m/z characterization of the emitted particles). However, the developed ion-beam source can produce a stable current over a long period of time with minimal expenditure of energy and source material. Such sources have potential applications in materials science and spacecraft engineering as principal elements of miniaturized electric propulsion systems (ionic thrusters).
Koronaios, Peter. „Studies of transport and thermodynamic properties of ionic liquids“. Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243047.
Der volle Inhalt der QuelleChable, Johann. „Électrolytes solides fluorés pour batteries tout solide à ions F-“. Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0276/document.
Der volle Inhalt der QuelleThis work deals with the synthesis, shaping and characterization of RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr) tysonite-type solid solutions. In a first part, onemeticulous approach has been set up for La1-xBaxF3-x solid solution, chosen as a reference.The solid-state synthesis of these materials led to a better knowledge of their chemicalcomposition (Vegard’s laws) and of the structure-ionic mobility correlations. The impact ofthe sintering process on the ionic conductivity is also highlighted. In a second part, the effectsof the nanostructuration conducted by ball-milling of the microcrystalline samples areevaluated. The use of the Design of Experiments methodology led to identify the optimummilling conditions. It appears that the synthesis of electrolytes can be sped- and scaled-up,while keeping high ionic conductivity properties. At last, this approach is applied on othertysonite-type solid solutions, to look for the best electrolyte. The Ce/Sr and Sm/Casubstitutions generate very promising ionic conductors but not really (electro)chemicallystable compounds. A compromise has been found with the choice of the La1-xSrxF3-x solidsolution as the FIB electrolyte for the electrochemical performances tests, regarding its higherchemical stability
Anaredy, Radhika Sudhakar. „The study of ionic liquid behavior at solid-liquid interfaces“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6540.
Der volle Inhalt der QuelleZhang, Long. „CHARGE TRANSPORT IN ELECTRONIC-IONIC COMPOSITES“. UKnowledge, 2017. http://uknowledge.uky.edu/cme_etds/79.
Der volle Inhalt der QuelleHammam, E. S. „Studies of the electrical properties of solid ionic halides and oxides“. Thesis, University of Kent, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374832.
Der volle Inhalt der QuelleWang, Xiaodi. „Ionic Conducting Composite as Electrolyte forLow Temperature Solid Oxide Fuel Cells“. Licentiate thesis, KTH, Functional Materials, FNM, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24723.
Der volle Inhalt der QuelleSolid oxide fuel cells (SOFCs) are considered as one of the most promising powergeneration technologies due to their high energy conversion efficiency, fuel flexibilityand reduced pollution. The current SOFCs with yttria-stabilized zirconia (YSZ)electrolyte require high operation temperature (800-1000 °C), which not only hinderstheir broad commercialization due to associated high cost and technologicalcomplications. Therefore, there is a broad interest in reducing the operating temperatureof SOFCs. The key to development of low-temperature SOFCs (LTSOFCs) is to explorenew electrolyte materials with high ionic conductivity at such low temperature (300-600 °C).Recently, ceria-based composite electrolyte, consisting of doped cerium oxide mixedwith a second phase (e.g. Na2CO3), has been investigated as a promising electrolyte forLTSOFCs. The ceria-based composite electrolyte has shown a high ionic conductivityand improved fuel cell performance below 600 °C. However, at present the developmentof composite electrolyte materials and their application in LTSOFCs are still at an initialstage. This thesis aims at exploring new composite systems for LTSOFCs with superiorproperties, and investigates conductivity behavior of the electrolyte. Two compositesystems for SOFCs have been studied in the thesis.In the first system, a novel concept of non-ceria-salt-composites electrolyte, LiAlO2-carbonate (Li2CO3-Na2CO3) composite electrolyte, was investigated for SOFCs. TheLiAlO2-carbonate electrolyte exhibited good conductivity and excellent fuel cellperformances below 650 oC. The ion transport mechanism of the LiAlO2-carbonatecomposite electrolyte was studied. The results indicated that the high ionic conductivityrelates to the interface effect between oxide and carbonate.In the second system, we reported a novel core-shell samarium-doped ceria(SDC)/Na2CO3 nanocomposite which is proposed for the first time, since the interface isdominant in the nanostructured composite materials. The core-shell nanocompositeparticles are smaller than 100 nm with amorphous Na2CO3 shell. The nanocompositeelectrolyte was applied in LTSOFCs and showed excellent performance. Theconductivity behavior and charge carriers have been studied. The results indicated that H+conductivity in SDC/Na2CO3 nanocomposite is predominant over O2- conductivity with1-2 orders of magnitude in the temperature range of 200-600 °C. It is suggested that theinterface in composite electrolyte supplies high conductive path for proton, while oxygenions are most probably transported by the SDC nano grain interiors. Finally, a tentativemodel “swing mechanism” was proposed for explanation of superior proton conduction.
QC 20100930
Zhang, Yuelan. „Synthesis and Characterization of Nanostructured Electrodes for Solid State Ionic Devices“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14000.
Der volle Inhalt der Quelleruan, cunfan. „Constructing an Ionic diode using Solid Supported Lipid bilayers: A Proposal“. Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1829.
Der volle Inhalt der QuelleZhao, Qichao. „Ionic Liquid Materials as Gas Chromatography Stationary Phases and Sorbent Coatings in Solid-Phase Microextraction“. University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1320963975.
Der volle Inhalt der QuelleXie, ZongHai. „Nuclear spin relaxation studies of ionic and defect mobility in lithium oxide“. Thesis, University of Kent, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387044.
Der volle Inhalt der QuelleOtaduy, Maria Concepcion Garcia. „A nuclear magnetic resonance study of ionic dynamics in solid polymer electrolytes“. Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263697.
Der volle Inhalt der QuelleJoshi, Manishkumar Dilipkumar. „Synthesis of New Classes of Ionic Liquids and Polymeric Ionic Liquids and their Applications in Microextraction Techniques“. University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1372871956.
Der volle Inhalt der QuelleGiven, M. J. „The influence of ions on water tree growth in polyethylene“. Thesis, University of Strathclyde, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381492.
Der volle Inhalt der QuelleDe, Vita Alessandro. „The energetics of defects and impurities in metals and ionic materials from first principles“. Thesis, Keele University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332301.
Der volle Inhalt der QuelleSivapalan, Nagalingam. „Electrical and electrochemical studies of some solid electrolytes“. Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236018.
Der volle Inhalt der QuelleBokun, G. S., Ya G. Groda, R. N. Lasovsky und V. S. Vikhrenko. „Charge Distribution Around Nanoscale Nonhomogeneities in Solid State Ionics“. Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42717.
Der volle Inhalt der QuelleSantos, Ana Rute Duarte dos. „Study on solubility of pharmaceutical compounds in ionic liquids“. Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/9660.
Der volle Inhalt der QuelleThe sufficient solubility of N-acetyl-L-cysteine (NAC), coumarin (COU) and 4-hydroxycoumarin (4HC) in alternative solvents obtained in this work can open new perspectives in pharmaceutical processing. Solid–liquid equilibrium (SLE) measurements have been made using a dynamic (synthetic) method. The melting point and the enthalpy of fusion of the pharmaceutical compounds were acquired using differential scanning calorimetry (DSC). The solubility of N-acetyl-L-cysteine and 4-hydroxycoumarin in trifluoromethanesulfonate ionic liquids was found to be significantly higher than in the studied bis(trifluoromethylsulfonyl)imide ionic liquids, and when compared, coumarin have the opposite behaviour. The best solvent amongst studied for this antioxidant (NAC) and anticoagulants (COU and 4HC) was discovered. The solid–liquid phase equilibrium were described using six different correlation equations which revealed relatively good description with the acceptable standard deviation temperature range. Moreover, the solubility data was used to calculate the 1-octanol/water partition coefficients and experimental partition coefficients (logP) was found to be negative in N-acetyl-L-cysteine and positive in the case of coumarin, at five temperatures with N-acetyl-L-cysteine being more hydrophilic and coumarin more hydrophobic; These results are also proof of the possibility of using these compounds as pharmaceutical products.
Najafi, Ali. „Application of Polymeric Ionic Liquid Solid-Phase Microextraction Sorbent Coatings and Ionic Liquid Stationary Phases for Liquid and Multidimensional Gas Chromatographic Techniques“. University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1449846148.
Der volle Inhalt der QuelleChiabrera, Francesco Maria. „Interface Engineering in Mixed Ionic Electronic Conductor Thin Films for Solid State Devices“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667601.
Der volle Inhalt der QuellePetit, Dominique, Jean-Pierre Korb, Pierre Levitz, Jean LeBideau und D. Brevet. „Molecular dynamics of ionic liquids confined in solid silica matrix for lithium batteries“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191885.
Der volle Inhalt der QuellePetit, Dominique, Jean-Pierre Korb, Pierre Levitz, Jean LeBideau und D. Brevet. „Molecular dynamics of ionic liquids confined in solid silica matrix for lithium batteries“. Diffusion fundamentals 10 (2009) 7, S. 1-3, 2009. https://ul.qucosa.de/id/qucosa%3A13045.
Der volle Inhalt der QuelleChinnam, Parameswara Rao. „MULTI-IONIC LITHIUM SALTS FOR USE IN SOLID POLYMER ELECTROLYTES FOR LITHIUM BATTERIES“. Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/311780.
Der volle Inhalt der QuellePh.D.
Commercial lithium ion batteries use liquid electrolytes because of their high ionic conductivity (>10-3 S/cm) over a broad range of temperatures, high dielectric constant, and good electrochemical stability with the electrodes (mainly the cathode cathode). The disadvantages of their use in lithium ion batteries are that they react violently with lithium metal, have special packing needs, and have low lithium ion transference numbers (tLi+ = 0.2-0.3). These limitations prevent them from being used in high energy and power applications such as in hybrid electric vehicles (HEVs), plug in electric vehicles (EVs) and energy storage on the grid. Solid polymer electrolytes (SPEs) will be good choice for replacing liquid electrolytes in lithium/lithium ion batteries because of their increased safety and ease of processability. However, SPEs suffer from RT low ionic conductivity and transference numbers. There have been many approaches to increase the ionic conductivity in solid polymer electrolytes. These have focused on decreasing the crystallinity in the most studied polymer electrolyte, polyethylene oxide (PEO), on finding methods to promote directed ion transport, and on the development of single ion conductors, where the anions are immobile and only the Li+ ions migrate (i.e. tLi+ = 1). But these attempts have not yet achieved the goal of replacing liquid electrolytes with solid polymer electrolytes in lithium ion batteries. In order to increase ionic conductivity and lithium ion transference numbers in solid polymer electrolytes, I have focused on the development of multi-ionic lithium salts. These salts have very large anions, and thus are expected to have low tanion- and high tLi+ transference numbers. In order to make the anions dissociative, structures similar to those formed for mono-ionic salts, e.g. LiBF4 and lithium imides have been synthesized. Some of the multi-ionic salts have Janus-like structures and therefore can self-assemble in polar media. Further, it is possible that these salts may not form non-conductive ion pairs and less conductive ion triplets. First, we have prepared nanocomposite electrolytes from mixtures of two polyoctahedral silsesquioxanes (POSS) nanomaterials, each with a SiO1.5 core and eight side groups. POSS-PEG8 has eight polyethylene glycol side chains that have low glass transition (Tg) and melt (Tm) temperatures and POSS-phenyl7(BF3Li)3 is a Janus-like POSS with hydrophobic phenyl groups and -Si-O-BF3Li ionic groups clustered on one side of the SiO1.5 cube. The electron-withdrawing POSS cage and BF3 groups enable easy dissociation of the Li+. In the presence of polar POSS-PEG8, the hydrophobic phenyl rings of POSS-phenyl7(BF3Li)3 aggregate and crystallize, forming a biphasic morphology, in which the phenyl rings form the structural phase and the POSS-PEG8 forms the conductive phase. The -Si-O-BF3- Li+ groups of POSS-phenyl7(BF3Li)3 are oriented towards the polar POSS-PEG8 phase and dissociate so that the Li+ cations are solvated by the POSS-PEG8. The nonvolatile nanocomposite electrolytes are viscous liquids that do not flow under their own weight. POSS-PEG8/POSS-phenyl7(BF3Li)3 at O/Li = 16/1 has a conductivity, σ = 2.5 x 10-4 S/cm at 30°C, 17 x greater than POSS-PEG8/LiBF4, and a low activation energy (Ea ~ 3-4 kJ/mol); σ = 1.6 x 10-3 S/cm at 90°C and 1.5 x 10-5 S/cm at 10°C. The lithium ion transference number was tLi+ = 0.50 ± 0.01, due to reduced mobility of the large, bulky anion and the system exhibited low interfacial resistance that stabilized after 3 days (both at 80°C). Secondly, solid polymer electrolytes have been prepared from the same salt, POSS-phenyl7(BF3Li)3 and polyethylene oxide (PEO). These exhibit high ambient temperature conductivity, 4 x 10-4 S/cm, and transference number, tLi+ = 0.6. A two-phase morphology is proposed in which the hydrophobic phenyl groups cluster and crystallize, and the three -BF3- form an anionic pocket, with the Li+ ions solvated by the PEO phase. The high ionic conductivity results from interfacial migration of Li+ ions loosely bonded to three -BF3- anions and the ether oxygens of PEO. Physical crosslinks formed between PEO/Li+ chains and the POSS clusters account for the solid structure of the amorphous PEO matrix. The solid polymer electrolyte has an electrochemical stability window of 4.6 V and excellent interfacial stability with lithium metal. In order to further enhance the ionic conductivity of solid polymer electrolytes, we have made two improvements. First, we have used so called half cube structures, T4-POSS, that contain 4 phenyl groups on one side of a Si-O- ring, and 4 ionic groups on the other side, and so are true Janus structures. They contain a 4/4 ratio of phenyl/ionic groups, unlike the previous structures that contain 7 phenyl groups/3 ionic groups. At the same O/Li ratio, the ionic conductivity of [PhOSi(OLi)]4 with POSS-PEG8 is higher than POSS-phenyl7Li3 because of more Li+ dissociation in the former case. Second, we have increased the dissociation of the lithium salts by replacing the Si-O-BF3Li groups with Si-(C3H4NLiSO2CF3)4. Both T4-POSS-(C3H4NLiSO2CF3)4 and POSS-(C3H4NLiSO2CF3)8 have been synthesized and characterized, with some preliminary conductivity data obtained.
Temple University--Theses
Pornprasertsuk, Rojana. „Ionic conductivity studies of solid oxide fuel cell electrolytes and theoretical modeling of an entire solid oxide fuel cell /“. May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleCurrie, David Blake. „A study of cation replacement in perovskite-related systems including high temperature superconductors“. Thesis, University of the West of Scotland, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254391.
Der volle Inhalt der QuelleKeen, David Anthony. „Determination of the structure of disordered materials by neutron scattering“. Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253382.
Der volle Inhalt der QuelleTole, Philip. „Ab initio studies of polarisabilities of ions in crystals“. Thesis, University of Exeter, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236521.
Der volle Inhalt der QuelleCox, Paul Andrew. „Theoretical and experimental studies of superionic mixed-metal fluorides“. Thesis, Keele University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277151.
Der volle Inhalt der QuelleSaha, Sudipto. „Lithium Ionic Conductivity and Stability Of Cubic Li7La3Zr2O12 Solid Electrolyte A First-Principles Study“. Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/32052.
Der volle Inhalt der QuelleWInd, Julia. „A combined experimental and computational approach to understanding and developing new solid-state ionic conductors“. Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17610.
Der volle Inhalt der Quelle