Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ionic Solids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ionic Solids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ionic Solids"
Kim, Sangtae, Shu Yamaguchi und James A. Elliott. „Solid-State Ionics in the 21st Century: Current Status and Future Prospects“. MRS Bulletin 34, Nr. 12 (Dezember 2009): 900–906. http://dx.doi.org/10.1557/mrs2009.211.
Der volle Inhalt der QuelleShimizu, Y., H. Sogabe und Y. Terashima. „The effects of colloidal humic substances on the movement of non-ionic hydrophobic organic contaminants in groundwater“. Water Science and Technology 38, Nr. 7 (01.10.1998): 159–67. http://dx.doi.org/10.2166/wst.1998.0289.
Der volle Inhalt der QuelleRamli, Nur Aainaa Syahirah, und Nor Aishah Saidina Amin. „Ionic Solid Nanomaterials: Synthesis, Characterization and Catalytic Properties Investigation“. Advanced Materials Research 699 (Mai 2013): 155–60. http://dx.doi.org/10.4028/www.scientific.net/amr.699.155.
Der volle Inhalt der QuelleShimizu, Y., und H. M. Liljestrand. „Sorption of Polycyclic Aromatic Hydrocarbons onto Natural Solids: Determination by Fluorescence Quenching Method“. Water Science and Technology 23, Nr. 1-3 (01.01.1991): 427–36. http://dx.doi.org/10.2166/wst.1991.0442.
Der volle Inhalt der QuelleLiaw, B. Y. „Electrochemical Aspects of Ionic Solids“. Key Engineering Materials 125-126 (Oktober 1996): 133–62. http://dx.doi.org/10.4028/www.scientific.net/kem.125-126.133.
Der volle Inhalt der QuelleWintersgill, Mary C. „Dielectric spectroscopy of ionic solids“. Radiation Effects and Defects in Solids 119-121, Nr. 1 (November 1991): 217–22. http://dx.doi.org/10.1080/10420159108224878.
Der volle Inhalt der QuelleHueckel, Theodore, Glen M. Hocky, Jeremie Palacci und Stefano Sacanna. „Ionic solids from common colloids“. Nature 580, Nr. 7804 (April 2020): 487–90. http://dx.doi.org/10.1038/s41586-020-2205-0.
Der volle Inhalt der QuelleThurzo, I., und D. R. T. Zahn. „Revealing ionic motion molecular solids“. Journal of Applied Physics 99, Nr. 2 (15.01.2006): 023701. http://dx.doi.org/10.1063/1.2158136.
Der volle Inhalt der QuelleItoh, Noriaki, und Katsumi Tanimura. „Radiation effects in ionic solids“. Radiation Effects 98, Nr. 1-4 (September 1986): 269–87. http://dx.doi.org/10.1080/00337578608206118.
Der volle Inhalt der QuelleKumar, Binod. „Ionic Transport through Heterogeneous Solids“. Transactions of the Indian Ceramic Society 66, Nr. 3 (Juli 2007): 123–30. http://dx.doi.org/10.1080/0371750x.2007.11012264.
Der volle Inhalt der QuelleDissertationen zum Thema "Ionic Solids"
Swaminathan, Narasimhan. „Stress-defect transport interactions in ionic solids“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28273.
Der volle Inhalt der QuelleCommittee Chair: Qu, Jianmin; Committee Member: Kohl,Paul A.; Committee Member: Liu, Meilin; Committee Member: McDowell, David L.; Committee Member: Zhu, Ting.
Melle-Franco, Manuel. „Computer simulation of ionic solids of technological interest“. Thesis, University of Kent, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327447.
Der volle Inhalt der QuelleZachariah, Manesh. „Electronic & ionic conduction & correlated dielectric relaxations in molecular solids“. Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404446.
Der volle Inhalt der QuelleEl estudio de los materiales cristalinos juega un papel destacado en la física del estado sólido. Sin embargo, los materiales desordenados son más abundantes en la naturaleza que los cristalinos y, además, muchas de las aplicaciones prácticas utilizan materiales que son débilmente o fuertemente desordenados, como vidrios, líquidos, cristales plásticos, cristales moleculares, polímeros, o cristales líquidos. Desde un punto de vista fundamental, aún carecemos de una comprensión de de los materiales desordenados y de la transición vítrea: la comprensión de las propiedades asociadas desorden requiere el uso de conceptos que se alejan de los aplicables al estado cristalino. Desde una perspectiva aplicada, la investigación en los sólidos desordenados está promovida por la importancia tecnológica de estos materiales en la vida cotidiana. Los sólidos desordenados pueden conducir electricidad por transporte de electrones o de iones. En el primer caso, los materiales desordenados muestran menor conductividad que sus respectivas fases cristalinas, debido a la localización de los electrones de conducción por la existencia de desorden, que da lugar a saltos de electrones como principal mecanismo de transporte de carga. Por otro lado, el mismo desorden puede permitir la difusión de iones a través de intersticios; la conductividad iónica de materiales desordenados es más alta que sus fases homólogas cristalinas. Esta tesis presenta un estudio experimental de la conducción eléctrica y de la dinámica molecular de sólidos moleculares formados por derivados de fullereno (C60Br6, C60(ONa)24) o por moléculas con dos grupos nitrilos (succinonitrila (C2H4(CN)2), glutaronitrila (C3H6 (CN)2)). Estos materiales presentan, según el caso, conducción electrónica, protónica, o iónica. La tesis analiza los diferentes tipos de conducción de carga en materiales moleculares así como los procesos físicos relacionados, tales como las relajaciones de carga espacial. En el material C60Br6 observamos conducción electrónica tipo n y un comportamiento de fase no trivial. La dependencia de la conductividad con la temperatura está de acuerdo con el modelo de salto de rango variable (VRH). El C60(ONa)24 tiene un comportamiento de fase aún más rico. Se sintetiza como un hidrato policristalino, y se puede obtener como material puro por calentamiento. Mientras que el material puro es un semiconductor de tipo n, su exposición a una atmósfera húmeda aumenta la conductividad de forma dramática debido al transporte de carga a través de las capas de hidratación, lo que probablemente se debe a un mecanismo de intercambio de protones como en el agua pura o en el hielo. La conductividad del hidrato depende fuertemente de la temperatura en el proceso de deshidratación. Ambas formas, pura e hidratada, muestran un proceso dinámico asociado a la acumulación de electrones en los límites de grano. La presencia de agua tiene un fuerte impacto en tal proceso. Por último se analizan la dinámica molecular y la conductividad iónica de cristales plásticos, en particular, de las aleaciones moleculares en fase plástica formadas entre la succinonitrila y la glutaronitrila. En las fases plásticas las moléculas ocupan los sitios cristalográficos de la red, pero se encuentran orientacionalmente desordenadas. Se demuestra que las aleaciones succinonitrila-glutaronitrila son los primeros cristales plásticos que se conocen en los que existe una correlación perfecta entre la corriente de iones y la dinámica reorientational de las moléculas en los sitios cristalográficos. El dopaje de las aleaciones con sales de Li aumenta la conductividad pero destruye la correlación anterior, lo que indica que la correlación sólo es válida cuando el transporte de carga está dominado por la difusión de iones moleculares. Tal correlación puede ser consecuencia de una correlación entre las escalas de tiempo de rotación y de difusión.
Datta, Biswajit. „Exploration of miscellaneous interfaces of some ionic solids and ionic liquids Prevailing in various solvent systems by the process of psysicochemical contrivance“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2673.
Der volle Inhalt der QuelleBurgess, Kevin. „Solid-State Nuclear Magnetic Resonance of Exotic Quadrupolar Nuclei as a Direct Probe of Molecular Structure in Organic Ionic Solids“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31971.
Der volle Inhalt der QuelleSwartz, Charles W. „First Principles Calculations for Liquids and Solids Using Maximally Localized Wannier Functions“. Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/274283.
Der volle Inhalt der QuellePh.D.
The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can be further engineered in the PbTiO 3 /SrTiO 3 superlattice and an interface enhancement of piezoelectricity is found in the BaTiO 3 /CaTiO 3 superlattice. The second project will look at The ionization potential distributions of hydrated hydroxide and hydronium which are computed within a many-body approach for electron excitations using configurations generated by ab initio molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by solvent water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions. The third project represents a work in progress, where we also make use of the previous electron excitation theory applied to ab initio x-ray emission spectroscopy. In this case we make use of a novel method to include the ultrafast core-hole electron dynamics present in such situations. At present we have shown only strong qualitative agreement with experiment.
Temple University--Theses
Mbogo, Francis Njagi. „Vibrational spectroscopy and latent symmetry effects in metal tricarbonyls and ionic solids : and dynamics of unusually H-bonded systems“. Thesis, University of East Anglia, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304529.
Der volle Inhalt der QuelleShakhov, Alexander. „Structure-Dynamics Relationships in Complex Fluids and Disordered Porous Solids Assessed using NMR“. Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-153105.
Der volle Inhalt der QuelleCastillo, Adriana. „Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX107/document.
Der volle Inhalt der QuelleOne of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials
Mu, Xiaoke [Verfasser], Hans-Joachim [Akademischer Betreuer] Kleebe und Peter A. van [Akademischer Betreuer] Aken. „TEM study of the structural evolution of ionic solids from amorphous to polycrystalline phases in the case of alkaline earth difluoride systems: Experimental exploration of energy landscape / Xiaoke Mu. Betreuer: Hans-Joachim Kleebe ; Peter A. van Aken“. Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1107771218/34.
Der volle Inhalt der QuelleBücher zum Thema "Ionic Solids"
Galwey, Andrew K. Thermal decomposition of ionic solids. Amsterdam: Elsevier, 1999.
Den vollen Inhalt der Quelle findenM, Stoneham A., Hrsg. Ionic solids at high temperatures. Singapore: World Scientific, 1989.
Den vollen Inhalt der Quelle findenMaier, Joachim. Physical chemistry of ionic materials: Ions and electrons in solids. Chichester: Wiley, 2004.
Den vollen Inhalt der Quelle findenTakehiko, Takahashi, und International Conference on Solid State Ionics (6th : 1987 : Garmisch-Partenkirchen, Germany), Hrsg. High conductivity solid ionic conductors: Recent trends and applications. Singapore: World Scientific, 1989.
Den vollen Inhalt der Quelle findenF, Imbusch G., Hrsg. Optical spectroscopy of inorganic solids. Oxford [Oxfordshire]: Clarendon Press, 1989.
Den vollen Inhalt der Quelle findenFreund, Hans-Joachim, und Eberhard Umbach, Hrsg. Adsorption on Ordered Surfaces of Ionic Solids and Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78632-7.
Der volle Inhalt der QuelleW.E. Heraeus Seminar (106th 1993 Bad Honnef, Germany). Adsorption on ordered surfaces of ionic solids and thin films. Berlin: Springer, 1993.
Den vollen Inhalt der Quelle findenHoward, Sean. Multiple-scattering X [alpha] calculations on transition metal defects in ionic solids. Birmingham: University of Birmingham, 1990.
Den vollen Inhalt der Quelle findenConference on Ionic Liquids and Solid Electrolytes (1st 1997 Szklarska Poręba, Poland). 1st Conference on Ionic Liquids and Solid Electrolytes: Proceedings : June 12-14, 1997, Szklarska Poręba, Poland. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 1997.
Den vollen Inhalt der Quelle findenSymposium on Thin Film Solid Ionic Devices and Materials (1995 Chicago, Ill.). Proceedings of the Symposium on Thin Film Solid Ionic Devices and Materials. Pennington, NJ: Electrochemical Society, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ionic Solids"
Mahan, Gerald D., und K. R. Subbaswamy. „Ionic Solids“. In Local Density Theory of Polarizability, 131–213. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2486-5_5.
Der volle Inhalt der QuelleSpaeth, Johann-Martin. „Spectroscopic Studies of Defects in Ionic and Semi-Ionic Solids“. In Defects in Solids, 205–41. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0761-8_9.
Der volle Inhalt der QuelleBalian, Roger. „Paramagnetism of Ionic Solids“. In From Microphysics to Macrophysics, 15–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-45475-5_2.
Der volle Inhalt der QuelleHammou, Abdelkader, und Samuel Georges. „Transport in ionic solids“. In Solid-State Electrochemistry, 91–169. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39659-6_3.
Der volle Inhalt der QuelleLaskar, A. L. „Diffusion in Ionic Solids“. In Diffusion in Materials, 459–69. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1976-1_21.
Der volle Inhalt der QuelleYoo, Han-Ill. „Diffusion in Ionic Solids“. In Lectures on Kinetic Processes in Materials, 247–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-25950-1_7.
Der volle Inhalt der QuelleAppel, Fritz, und Ulrich Messerschmidt. „Dislocation Cutting Processes in Ionic Crystals“. In Dislocations in Solids, 463–66. London: CRC Press, 2023. http://dx.doi.org/10.1201/9780429070914-111.
Der volle Inhalt der QuelleLunden, Arnold. „Ionic Conduction in Sulphates“. In Fast Ion Transport in Solids, 181–201. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_10.
Der volle Inhalt der QuelleMagistris, A. „Ionic Conduction in Glasses“. In Fast Ion Transport in Solids, 213–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_12.
Der volle Inhalt der QuelleEconomou, Eleftherios N. „Crystal Structure and Ionic Vibrations“. In The Physics of Solids, 245–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02069-8_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ionic Solids"
Lineberger, W. Carl. „Time Resolved Photochemistry in Ionic Clusters“. In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sthb1.
Der volle Inhalt der QuelleNegrut, Dan, Mihai Anitescu, Todd Munson und Peter Zapol. „Simulating Nanoscale Processes in Solids Using DFT and the Quasicontinuum Method“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81755.
Der volle Inhalt der QuelleAsokamani, R., und Mercy Amirthakumari. „Metallisation and superconductivity in some of the ionic and covalent solids under pressure“. In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46420.
Der volle Inhalt der QuelleWilliams, Richard M., Kenneth M. Beck, Alan G. Joly, J. Thomas Dickinson und Wayne P. Hess. „Pulse-width influence on laser-induced desorption of positive ions from ionic solids“. In Optoelectronics '99 - Integrated Optoelectronic Devices, herausgegeben von Jan J. Dubowski, Henry Helvajian, Ernst-Wolfgang Kreutz und Koji Sugioka. SPIE, 1999. http://dx.doi.org/10.1117/12.352727.
Der volle Inhalt der QuelleStrobel, Andreas, Ingo Fischer, Klaus Müller-Dethlefs und Vladimir E. Bondybey. „Zeke Photoelectron Spectroscopy as a Probe of Dissociative States“. In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sfa1.
Der volle Inhalt der QuelleBasiev, Tasoltan T., Petr G. Zverev, Alexander A. Sobol und R. C. Powell. „Solid State Materials for Raman Lasers“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cwf40.
Der volle Inhalt der QuelleLotshaw, William T., P. Randall Staver, Steven Palese, Lynn Schilling und R. J. Dwayne Miller. „Femtosecond probes of molecular and structural dynamics in liquid water: dependence on temperature and ionic solutes“. In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sfb3.
Der volle Inhalt der QuelleWu, Di, Hui Sun, Cody Cockreham, Xianghui Zhang, Megan Hawkins, Hongwu Xu, Su Ha et al. „Thermodynamics of Materials and Minerals under Confinement: From Ionic and Organic Solids to Refractory Ceramics“. In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.18626.
Der volle Inhalt der QuelleBisquert, Juan. „Extensions of the Stochastic Model of the Overdamped Oscillator Applied to AC Ionic Conductivity in Solids“. In NOISE AND FLUCTUATIONS: 18th International Conference on Noise and Fluctuations - ICNF 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2036698.
Der volle Inhalt der QuelleGan, Yu, und Van P. Carey. „An Exploration of the Effects of Dissolved Ionic Solids on Bubble Merging in Water and Its Impact on the Leidenfrost Transition“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23330.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ionic Solids"
Zhou, Xiaowang, F. Patrick Doty, Michael E. Foster, Pin Yang und Hongyou Fan. High Fidelity Modeling of Ionic Conduction in Solids. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562645.
Der volle Inhalt der QuelleHardy, John R. Studies on the Microwave Optics of Ionic Molecular Solids. Fort Belvoir, VA: Defense Technical Information Center, März 2002. http://dx.doi.org/10.21236/ada413643.
Der volle Inhalt der QuelleWang, J. (Solid state ionics). Office of Scientific and Technical Information (OSTI), Dezember 1989. http://dx.doi.org/10.2172/5241910.
Der volle Inhalt der QuelleBalachandran, U., J. T. Dusek, P. S. Maiya, R. L. Mieville, B. Ma, M. S. Kleefisch und C. A. Udovich. Separation of gases with solid electrolyte ionic conductors. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/459338.
Der volle Inhalt der QuelleAngell, Charles A., Don Gervasio, Jean-Philippe Belieres und Xiao-Guang Sun. Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada484415.
Der volle Inhalt der QuelleGervasio, Dominic, und C. A. Angell. Fuel Cell Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles. Fort Belvoir, VA: Defense Technical Information Center, Juli 2008. http://dx.doi.org/10.21236/ada520641.
Der volle Inhalt der QuelleBae, Young K., und Philip C. Cosby. Ionic Solid Hydrogen Fuel: Production and Properties of Hydrogen ion and Energetic Neutral Clusters. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada227683.
Der volle Inhalt der QuelleBlack, Hayden T., und Katharine Lee Harrison. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1330204.
Der volle Inhalt der QuelleROY, LINDSAY. SOLID STATE IONICS: MATERIALS DEVELOPMENT BY MULTISCALE MODELING AND ADVANCED MANUFACTURING TECHNIQUES. Office of Scientific and Technical Information (OSTI), Oktober 2021. http://dx.doi.org/10.2172/1827690.
Der volle Inhalt der QuelleTurner, Allen. Power and Thermal Technologies for Air and Space. Delivery Order 0001: Single Ionic Conducting Solid-State Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada460518.
Der volle Inhalt der Quelle