Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ionic Liquid interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ionic Liquid interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ionic Liquid interaction"
Jorda-Faus, Pepe, Enrique Herrero und Rosa Arán-Ais. „Study of M(hkl)| Ionic Liquid Interfaces in Well-Defined Surroundings“. ECS Meeting Abstracts MA2022-01, Nr. 55 (07.07.2022): 2325. http://dx.doi.org/10.1149/ma2022-01552325mtgabs.
Der volle Inhalt der QuelleJesus, Ana R., Luís R. Raposo, Mário R. C. Soromenho, Daniela A. S. Agostinho, José M. S. S. Esperança, Pedro V. Baptista, Alexandra R. Fernandes und Patrícia M. Reis. „New Non-Toxic N-alkyl Cholinium-Based Ionic Liquids as Excipients to Improve the Solubility of Poorly Water-Soluble Drugs“. Symmetry 13, Nr. 11 (31.10.2021): 2053. http://dx.doi.org/10.3390/sym13112053.
Der volle Inhalt der QuelleXu, Qiang, Wei Jiang, Jianbai Xiao und Xionghui Wei. „Absorption of Sulfur Dioxide by Tetraglyme–Sodium Salt Ionic Liquid“. Molecules 24, Nr. 3 (26.01.2019): 436. http://dx.doi.org/10.3390/molecules24030436.
Der volle Inhalt der QuelleHeinze, M. T., J. C. Zill, J. Matysik, W. D. Einicke, R. Gläser und A. Stark. „Solid–ionic liquid interfaces: pore filling revisited“. Phys. Chem. Chem. Phys. 16, Nr. 44 (2014): 24359–72. http://dx.doi.org/10.1039/c4cp02749c.
Der volle Inhalt der QuelleZhou, Yafei, Junfeng Zhan, Xiang Gao, Cao Li, Konstantin Chingin und Zhanggao Le. „The cation−anion interaction in ionic liquids studied by extractive electrospray ionization mass spectrometry“. Canadian Journal of Chemistry 92, Nr. 7 (Juli 2014): 611–15. http://dx.doi.org/10.1139/cjc-2014-0023.
Der volle Inhalt der QuellePutz, Mihai V., Ana-Maria Lacrama und Vasile Ostafe. „Spectral SAR Ecotoxicology of Ionic Liquids: TheDaphnia magnaCase“. Research Letters in Ecology 2007 (2007): 1–5. http://dx.doi.org/10.1155/2007/12813.
Der volle Inhalt der QuelleAlguacil, Francisco J., und Félix A. Lopez. „Insight into the Liquid–Liquid Extraction System AuCl4−/HCl/A327H+Cl− Ionic Liquid/Toluene“. Processes 9, Nr. 4 (30.03.2021): 608. http://dx.doi.org/10.3390/pr9040608.
Der volle Inhalt der QuellePatil, Amol Baliram, und Bhalchandra Mahadeo Bhanage. „Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids“. Physical Chemistry Chemical Physics 18, Nr. 23 (2016): 15783–90. http://dx.doi.org/10.1039/c6cp02819e.
Der volle Inhalt der QuelleVerevkin, Sergey P., Dzmitry H. Zaitsau und Ralf Ludwig. „Molecular Liquids versus Ionic Liquids: The Interplay between Inter-Molecular and Intra-Molecular Hydrogen Bonding as Seen by Vaporisation Thermodynamics“. Molecules 28, Nr. 2 (05.01.2023): 539. http://dx.doi.org/10.3390/molecules28020539.
Der volle Inhalt der QuelleZeindlhofer, Veronika, und Christian Schröder. „Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures“. Biophysical Reviews 10, Nr. 3 (23.04.2018): 825–40. http://dx.doi.org/10.1007/s12551-018-0416-5.
Der volle Inhalt der QuelleDissertationen zum Thema "Ionic Liquid interaction"
Biplab, Rajbanshi. „Investigation of host- guest inclusion complexation of some biologically potent molecules and solvent consequences of some food preservations with the manifestation of synthesis, characterization and innovative applications“. Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/3963.
Der volle Inhalt der QuelleHossain, Mohammad Zahid. „A new lattice fluid equation of state for associated CO₂ + polymer and CO₂ + ionic liquid systems“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53475.
Der volle Inhalt der QuelleWang, Yong-Lei. „Electrostatic Interactions in Coarse-Grained Simulations : Implementations and Applications“. Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-92707.
Der volle Inhalt der QuelleFrança, João. „Solid-liquid interaction in ionanofluids. Experiments and molecular simulation“. Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC077.
Der volle Inhalt der QuelleOne of the main areas of research in chemistry and chemical engineering involves the use of ionic liquids and nanomaterials as alternatives to many chemical products and chemical processes, as the latter are currently considered to be environmentally non-friendly. Their possible use as new heat transfer fluids and heat storage materials, which can obey to most principles of green chemistry or green processing, requires the experimental and theoretical study of the heat transfer mechanisms in complex fluids, like the ionanofluids. It was the purpose of this dissertation to study ionanofluids, which consist on the dispersion of nanomaterials in an ionic liquid.The first objective of this work was to measure thermophysical properties of ionic liquids and ionanofluids, namely thermal conductivity, viscosity, density and heat capacity in a temperature range between -10 e 150 ºC and at atmospherical pressure. In this sense, the thermophysical properties of a considerable set of ionic liquids and ionanofluids were measured, with particular emphasis on the thermal conductivity of the fluids. The ionic liquids studied were [C2mim][EtSO4], [C4mim][(CF3SO2)2N], [C2mim][N(CN)2], [C4mim][N(CN)2], [C4mpyr][N(CN)2], [C2mim][SCN], [C4mim][SCN], [C2mim][C(CN)3], [C4mim][C(CN)3], [P66614][N(CN)2], [P66614][Br] and their suspensions with 0.5% and 1% w/w of multi-walled carbon nanotubes (MWCNTs). The results obtained show that there is a substantial enhancement of the thermal conductivity of the base fluid due to the suspension of the nanomaterial, considering both mass fractions. However, the enhancement varies significantly when considering different base ionic liquids, with a range between 2 to 30%, with increasing temperature. This fact makes it more difficult to unify the obtained information in order to obtain a model that allows predicting the enhancement of the thermal conductivity. Current models used to calculate the thermal conductivity of nanofluids present values that are considerably underestimated when compared to the experimental ones, somewhat due to the considerations on the role of the solid-liquid interface on heat transport.Considering density, the impact from the addition of MWCNTs on the base fluid’s density is very low, ranging between 0.25% and 0.5% for 0.5% w/w and 1% w/w MWCNTs, respectively. This was fairly expected and is due to the considerable difference in density between both types of materials. However, viscosity was the property for which the highest values of enhancement were verified, ranging between 28 and 245% in both mass fractions of MWCNTs. The heat capacity was the only of the four properties mentioned above not to be studied in this work due to technical issues with the calorimeter to be used. Nevertheless, the amount of data collected on the remainder thermophysical properties was extensive. It is believed that the latter contributes meaningfully to a growing database of ionic liquids and ionanofluids’ properties, while providing insight on the variation of said properties obtained from the suspension of MWCNTs in ionic liquids.The second objective of this work consisted on the development of molecular interaction models between ionic liquids and highly conductive nanomaterials, such as carbon nanotubes and graphene sheets. These models were constructed based on quantum calculations of the interaction energy between the ions and a cluster, providing interaction potentials. Once these models were obtained, a second stage on this computational approach entailed to simulate, by Molecular Dynamics methods, the interface nanomaterial/ionic liquid, in order to understand the specific interparticle/molecular interactions and their contribution to the heat transfer. This would allow to study both structural properties, such as the ordering of the ionic fluid at the interface, and dynamic ones, such as residence times and diffusion. (...)
Cremer, Till [Verfasser], und Hans-Peter [Akademischer Betreuer] Steinrück. „Ionic Liquid Bulk and Interface Properties : Electronic Interaction, Molecular Orientation and Growth Characteristics = Ionische Flüssigkeiten und deren Volumen- und Grenzflächeneigenschaften / Till Cremer. Betreuer: Hans-Peter Steinrück“. Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2012. http://d-nb.info/1021259578/34.
Der volle Inhalt der QuelleCho, Chul-Woong [Verfasser], Jorg Akademischer Betreuer] Thöming und Ingo [Akademischer Betreuer] [Krossing. „The contribution of molecular interaction potentials to properties and activities of ionic liquid ions in solution / Chul-Woong Cho. Gutachter: Jorg Thöming ; Ingo Krossing. Betreuer: Jorg Thöming“. Bremen : Staats- und Universitätsbibliothek Bremen, 2012. http://d-nb.info/1071993739/34.
Der volle Inhalt der QuelleAshworth, Claire. „A computational investigation of local interactions within ionic liquids and ionic liquid analogues“. Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/58256.
Der volle Inhalt der QuelleMamusa, Marianna. „Colloidal interactions in ionic liquids“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01058482.
Der volle Inhalt der QuelleHessey, Stephen. „Surface interactions of ionic liquids“. Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664318.
Der volle Inhalt der QuelleChoudhury, Subhankar. „Physicochemical study of diverse interactions of ionic liquids and biologically active solutes prevailing in liquid environments“. Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2763.
Der volle Inhalt der QuelleBücher zum Thema "Ionic Liquid interaction"
Cremer, Till. Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics. Heidelberg: Springer International Publishing, 2013.
Den vollen Inhalt der Quelle findenZhang, Suojiang, Jianji Wang, Xingmei Lu und Qing Zhou, Hrsg. Structures and Interactions of Ionic Liquids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-38619-0.
Der volle Inhalt der QuelleIonic Liquid Bulk And Interface Properties Electronic Interaction Molecular Orientation And Growth Characteristics. Springer International Publishing AG, 2013.
Den vollen Inhalt der Quelle findenCremer, Till. Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics. Springer, 2013.
Den vollen Inhalt der Quelle findenCremer, Till. Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics. Springer International Publishing AG, 2015.
Den vollen Inhalt der Quelle findenZhou, Qing, Suojiang Zhang, Jianji Wang und Xingmei Lu. Structures and Interactions of Ionic Liquids. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenStructures And Interactions Of Ionic Liquids. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Den vollen Inhalt der Quelle findenStructures and Interactions of Ionic Liquids. Springer Berlin / Heidelberg, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ionic Liquid interaction"
Zhou, Ting, und Guiying Xu. „Aggregation Behavior of Ionic Liquid-Based Gemini Surfactants and Their Interaction with Biomacromolecules“. In Ionic Liquid-Based Surfactant Science, 127–49. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118854501.ch6.
Der volle Inhalt der QuelleSingh, Surya Pratap, Ramalingam Anantharaj und Tamal Banerjee. „UNIFAC Group Interaction Prediction for Ionic Liquid-Thiophene Based Systems Using Genetic Algorithm“. In Lecture Notes in Computer Science, 195–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17298-4_20.
Der volle Inhalt der QuelleBerthod, Alain, Ines Girard und Colette Gonnet. „Stationary Phase in Micellar Liquid Chromatography: Surfactant Adsorption and Interaction with Ionic Solutes“. In ACS Symposium Series, 130–41. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0342.ch005.
Der volle Inhalt der QuelleCui, Guokai. „Quasi-chemisorption by Ionic Liquids Through Quasi-chemical Interaction“. In Encyclopedia of Ionic Liquids, 1–8. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6739-6_139-1.
Der volle Inhalt der QuelleCui, Guokai. „Quasi-chemisorption by Ionic Liquids Through Quasi-chemical Interaction“. In Encyclopedia of Ionic Liquids, 1154–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_139.
Der volle Inhalt der QuelleYang, Zhen. „Ionic Liquids and Proteins: Academic and Some Practical Interactions“. In Ionic Liquids in Biotransformations and Organocatalysis, 15–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118158753.ch2.
Der volle Inhalt der QuelleWalrafen, G. E., und W. H. Yang. „Fluctuations of Thermodynamic Properties of Supercooled Liquid Water“. In Interactions of Water in Ionic and Nonionic Hydrates, 141–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72701-6_24.
Der volle Inhalt der QuelleHunt, Patricia A. „CHAPTER 16. Noncovalent Interactions in Ionic Liquids“. In Catalysis Series, 350–76. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016490-00350.
Der volle Inhalt der QuelleDeschamps, Johnny, und Agilio A. H. Pádua. „Interactions of Gases with Ionic Liquids: Molecular Simulation“. In ACS Symposium Series, 150–58. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0901.ch011.
Der volle Inhalt der QuelleGomes, M. F. Costa, P. Husson, J. Jacquemin und V. Majer. „Interactions of Gases with Ionic Liquids: Experimental Approach“. In ACS Symposium Series, 207–18. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0901.ch016.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ionic Liquid interaction"
Takaoka, Gikan, H. Ryuto und M. Takeuchi. „Surface Interaction and Processing Using Polyatomic Cluster Ions“. In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.18-21.
Der volle Inhalt der QuelleKohanoff, Jorge, Emilio Artacho, Károly Tokési und Béla Sulik. „First-principles molecular dynamics simulations of the interaction of ionic projectiles with liquid water and ice“. In RADIATION DAMAGE IN BIOMOLECULAR SYSTEMS: Proceedings of the 5th International Conference (RADAM 2008). AIP, 2008. http://dx.doi.org/10.1063/1.3058991.
Der volle Inhalt der QuelleNazaripoor, Hadi, Charles R. Koch und Subir Bhattacharjee. „Dynamics of Thin Liquid Bilayers Subjected to an External Electric Field“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37302.
Der volle Inhalt der QuellePerlmutter, Stephen H., David Doroski und Garret Moddel. „Liquid Crystal Device Performance Degradation through Selective Adsorption of Ions by Alignment Layers“. In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slma.1995.lthd3.
Der volle Inhalt der QuelleGan, Yu, und Van P. Carey. „An Exploration of the Effects of Dissolved Ionic Solids on Bubble Merging in Water and Its Impact on the Leidenfrost Transition“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23330.
Der volle Inhalt der QuelleGuo, Hong, Rui Liu, Alfonso Fuentes-Aznar und Patricia Iglesias Victoria. „Friction and Wear Properties of Halogen-Free and Halogen-Containing Ionic Liquids Used As Neat Lubricants, Lubricant Additives and Thin Lubricant Layers“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67971.
Der volle Inhalt der QuelleYazdi, Shahrzad, Reza Monazami und Mahmoud A. Salehi. „3D Numerical Analysis of Velocity Profiles of PD, EO and Combined PD-EO Flows Through Microchannels“. In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96039.
Der volle Inhalt der QuelleSharma, Neeraj, Gerardo Diaz und Edbertho Leal-Quiros. „Effects of Externally Applied Electric Field on the Electric Double Layer Formed in an Electrolyte Layer and its Contribution Towards Joule Heating“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63329.
Der volle Inhalt der QuelleKhan, Rizwan Ahmed, Hafiz Mudaser Ahmad, Mobeen Murtaza, Abdulazeez Abdulraheem, Muhammad Shahzad Kamal und Mohamed Mahmoud. „Impact of Multi-Branched Ionic Liquid on Shale Swelling and Hydration for High Temperature Drilling Applications“. In SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/202143-ms.
Der volle Inhalt der QuelleDavidson, Jacob D., und N. C. Goulbourne. „Actuation and Charging Characteristics of Ionic Liquid-Ionic Polymer Transducers“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3892.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ionic Liquid interaction"
Fayer, Michael D. Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, Januar 2016. http://dx.doi.org/10.21236/ad1003769.
Der volle Inhalt der QuelleEucker, IV, und William. Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study. Fort Belvoir, VA: Defense Technical Information Center, Mai 2008. http://dx.doi.org/10.21236/ada486611.
Der volle Inhalt der Quelle