Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ion-selective electrode (ISE)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ion-selective electrode (ISE)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ion-selective electrode (ISE)"
Thomas, J. D. R. „Devices for ion-sensing and pX measurements“. Pure and Applied Chemistry 73, Nr. 1 (01.01.2001): 31–38. http://dx.doi.org/10.1351/pac200173010031.
Der volle Inhalt der QuelleSaefurohman, Asep, Buchari und Indra Noviandri. „La(III) Ion Selective Electrode with PTFE Membrane Containing Tributyl Phosphate Ionophore“. Key Engineering Materials 874 (Januar 2021): 50–57. http://dx.doi.org/10.4028/www.scientific.net/kem.874.50.
Der volle Inhalt der QuelleWu, Rongrong, Xue-Gang Chen, Chunhui Tao, Yuanfeng Huang, Ying Ye, Qiujin Wang, Yifan Zhou, Quan Jin und Wei Cai. „An All-Solid-State Silicate Ion-Selective Electrode Using PbSiO3 as a Sensitive Membrane“. Sensors 19, Nr. 3 (27.01.2019): 525. http://dx.doi.org/10.3390/s19030525.
Der volle Inhalt der QuelleUrbanowicz, Marcin, Kamila Sadowska, Dorota G. Pijanowska, Radosław Pomećko und Maria Bocheńska. „Potentiometric Solid-Contact Ion-Selective Electrode for Determination of Thiocyanate in Human Saliva“. Sensors 20, Nr. 10 (15.05.2020): 2817. http://dx.doi.org/10.3390/s20102817.
Der volle Inhalt der QuelleHassan, Eldin, Amr, Al-Omar, Kamel und Khalifa. „Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer“. Sensors 19, Nr. 18 (09.09.2019): 3891. http://dx.doi.org/10.3390/s19183891.
Der volle Inhalt der QuelleBrackett, J., B. Durley, R. Janczak, V. Kazlauskas, J. Kmiec, J. Norlie, R. Rosencranz, S. Schultz, T. Spring und W. Theusch. „Centrifugal ion-selective electrode system for potassium in whole blood“. Clinical Chemistry 36, Nr. 12 (01.12.1990): 2126–30. http://dx.doi.org/10.1093/clinchem/36.12.2126.
Der volle Inhalt der QuelleZhang, Chuqing, Yang He, Jianbo Wu, Manqing Ai, Wei Cai, Ying Ye, Chunhui Tao, Pingping Zhang und Quan Jin. „Fabrication of an All-Solid-State Carbonate Ion-Selective Electrode with Carbon Film as Transducer and Its Preliminary Application in Deep-Sea Hydrothermal Field Exploration“. Chemosensors 9, Nr. 8 (23.08.2021): 236. http://dx.doi.org/10.3390/chemosensors9080236.
Der volle Inhalt der QuelleWANG, JIAN, RICHARD E. FARRELL und A. DUNCAN SCOTT. „COMPARISON OF ION-SELECTIVE ELECTRODE METHODS FOR DETERMINING POTASSIUM Q/I RELATIONSHIPS“. Canadian Journal of Soil Science 70, Nr. 4 (01.11.1990): 693–704. http://dx.doi.org/10.4141/cjss90-071.
Der volle Inhalt der QuelleBertholf, R. L., M. G. Savory, K. H. Winborne, J. C. Hundley, G. M. Plummer und J. Savory. „Lithium determined in serum with an ion-selective electrode.“ Clinical Chemistry 34, Nr. 7 (01.07.1988): 1500–1502. http://dx.doi.org/10.1093/clinchem/34.7.1500.
Der volle Inhalt der QuelleHu, Shihui, Rong Zhang und Yunfang Jia. „Porous Graphene Oxide Decorated Ion Selective Electrode for Observing Across-Cytomembrane Ion Transport“. Sensors 20, Nr. 12 (21.06.2020): 3500. http://dx.doi.org/10.3390/s20123500.
Der volle Inhalt der QuelleDissertationen zum Thema "Ion-selective electrode (ISE)"
Berg, Josephine. „An Ion-Selective Electrode for Detection of Ammonium in Wastewater Treatment Plants“. Thesis, KTH, Kemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298183.
Der volle Inhalt der QuelleMonitoring ammonium in wastewater is vital to improve the treatment process and monitor the release of the pollutant into the ecosystem. Ion-selective electrodes (ISEs) is a promising technique in the area where the ISE is often based on a polymeric membrane containing the ionophore nonactin. The polymeric ion-selective membrane is drop-cast onto graphite or glassy carbon electrode substrates together with an ion-to-electron transducing layer. Nonactin-based ISEs typically demonstrate a limit of detection (LOD) in the range of 10-5 M, but exhibit significant potassium interferences. A solid-state system based on graphite electrodes, including an ISE and a reference electrode (RE), was investigated in this study. The ISEs were produced by drop-casting ion-to-electron transducing functional multi-walled carbon nanotubes (f-MWCNTs) dispersed in tetrahydrofuran (THF) and a membrane cocktail comprising poly(vinyl chloride) (PVC), plasticizer, and nonactin dispersed in THF onto graphite electrodes. The membrane was then covered with a buffered poly(vinyl alcohol) (PVA) hydrogel of pH 7 and a gas-permeable membrane (GPM). The solid-state RE was produced by drop-casting a poly(vinyl butyral) (PVB) membrane cocktail saturated with NaCl onto the graphite electrode. ISEs using f-MWCNTs as ion-to-electron transducers and a PVC-based ammonium-sensitive membrane with nonactin were successfully produced. The electrodes exhibited LODs in the range of 10-5 M, which is comparable to previous articles published on the subject. Additionally, PVB-based solid-state REs saturated with NaCl were successfully produced. The reference electrodes exhibited minor influences when varying the concentrations of various salts. The study showed that the GPM Hyflon AD combined with a PVA hydrogel was not suitable in this configuration, as air voids were formed in the drying process, and the membrane was easily delaminated. It was suggested that this behavior could be a consequence of the incompatibility of PVC and the GPM due to their difference in polarity.
Kronborg, Anne Ingelill Engvik. „Trace Elements in Norwegian and Polish Tea Infusions : Determined by High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR ICP-MS) and Ion Selective Electrode (ISE)“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21166.
Der volle Inhalt der QuelleLin, Kao Ning, und 林國甯. „Direct Ion-Selective Electrode (ISE) Determination of Sodium, Potassium and Chloride in Serum Samples Compared withvIndirect Ion-Selective Electrode Determination“. Thesis, 2005. http://ndltd.ncl.edu.tw/handle/69109622228212445721.
Der volle Inhalt der Quelle臺北醫學大學
醫學技術學系
93
There are substances common as well as electrolyte can not detect by colorimetry method. Determination of Sodium, Potassium and Chloride can process by Flame Photometry、Atomic absorption spectrophotometry and Ion-Selective Electrode. Ion selective electrode is one kind of electrochemical half-reaction cell, its electrode potential varies with the ion concentration in the testing solution. It is used to measure the concentration of one specific ion in the solution. The electrolyte analyzer has been used as a practical ion concentration detect sensor because of its simplicity of device constructing, simple operation, high accuracy and precision. The ion selective electrodes are used in the clinical chemistry electrolyte analyzer to test the concentrations of sodium and potassium ion in the serum sample in Taiwan commonly. There are many hospitals applied Indirect Ion-Selective Electrode(Indirect ISE)clinical chemistry analyzer. Are there significant differences between Indirect ISE and Direct Ion-Selective Electrode(Direct ISE)? Are the Direct ISE more accuracy routine clinical chemistry analysis method? Are there some methods to eliminate the common interferences as well as lipid in routine serum sample? We investigate the determination of sodium and potassium ion and focus on differences between Indirect ISE and Direct ISE in this thesis. We collect two hundred and thirty-three serum samples. Each sample splits into two aliquots. One aliquot process Indirect ISE electrolyte analysis and the other test by Direct ISE in Roche Integra and Hitachi clinical chemistry instrument. We get some results from this study: 1.There are significant differences between Indirect ISE and Direct ISE to analyze electrolyte. If the electrolytes are measured by Indirect ISE analyzer, there is a predictable decrease data results. 2.HDL-C and LDL-C two valuables have no significant correlations with differences between Indirect ISE and Direct ISE electrolyte analyzer. TG and T-cho two valuables have significant correlations with differences between Indirect ISE and Direct ISE electrolyte analyzer. 3.We apply organic reagent(Ethyl Acetate) to eliminate serum lipid and correct bias which from Indirect ISE analysis. 4.We apply ultracentrifuge method to eliminate serum lipid and correcte bias from Indirect ISE analyzer. The results of this research shows the valuable mode in practical clinical chemistry field. Because this research is only small scope initial study about ISE, samples are minor and only apply one kind of clinical chemistry analyzer. We can not get a better precise score. As a consequence and extinguish predicting model is set up for clinical chemistry analysis field increasing personal health and clinical diagnosis abilities.
Bücher zum Thema "Ion-selective electrode (ISE)"
Dixon, Lois Anna. The measurement and validity of ion-selectivity [i.e., selective] electrode selectivity coefficients under non-Nernstian conditions. 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ion-selective electrode (ISE)"
„ISE (Ion-Selective Electrode)“. In Encyclopedia of Biophysics, 1156. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_100503.
Der volle Inhalt der QuelleSENDA, MITSUGI, TAKASHI KAKIUCHI, TOSHIHARU NUNO, TOSHIYUKI OSAKAI und TADAAKI KAKUTANI. „THEORY OF ION-SELECTIVE ELECTRODES, AMPEROMETRIC ISE AND POTENTIOMETRIC ISE“. In Ion-Selective Electrodes, 559–68. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-08-037933-3.50040-5.
Der volle Inhalt der QuelleCAMMANN, K., und S. L. XIE. „ISE SELECTIVITY AND ION-EXCHANGE KINETICS“. In Ion-Selective Electrodes, 43–64. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-08-037933-3.50008-9.
Der volle Inhalt der Quelle„Ion-selective Electrodes (ISE)“. In Analysis and Analyzers, 458–73. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370323-34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ion-selective electrode (ISE)"
David Hernandez-Varela, Josue, Francisco J. Bejarano Santiago, Jose Jorge Chanona-Perez und Juan Vicente Mendez Mendez. „Development and Characterization of a Recycled Plastic Based Ion-Selective Electrode (PB-ISE) Using CNT Ink as Ion-To-Electron Transducer“. In 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2019. http://dx.doi.org/10.1109/iceee.2019.8884486.
Der volle Inhalt der QuelleStelzle, M., C. Bieg, K. Fuchsberger, G. Linke, R. Samba und S. Werner. „A3.3 - Solid contact ion selective electrodes (ISE) for applications in life sciences, biotechnology and environmental monitoring – Technology and Performance“. In AMA Conferences 2017. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2017. http://dx.doi.org/10.5162/sensor2017/a3.3.
Der volle Inhalt der QuelleNottoli, Emmanuelle, Philippe Bienvenu, Didier Bourlès, Alexandre Labet, Maurice Arnold und Maité Bertaux. „Determination of Long-Lived Radionuclide (10Be, 41Ca, 129I) Concentrations in Nuclear Waste by Accelerator Mass Spectrometry“. In ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icem2013-96054.
Der volle Inhalt der Quelle