Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ion physics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ion physics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ion physics"
Kuyucak, Serdar, und Turgut Bastug. „Physics of Ion Channels“. Journal of Biological Physics 29, Nr. 4 (2003): 429–46. http://dx.doi.org/10.1023/a:1027309113522.
Der volle Inhalt der QuellePrzybycien, Mariusz. „Heavy-ion Physics (ATLAS)“. EPJ Web of Conferences 182 (2018): 02101. http://dx.doi.org/10.1051/epjconf/201818202101.
Der volle Inhalt der QuellePetrushanko, S. „Heavy-Ion Physics at CMS“. Moscow University Physics Bulletin 77, Nr. 2 (April 2022): 247–49. http://dx.doi.org/10.3103/s0027134922020801.
Der volle Inhalt der QuelleSchutz, Yves. „Heavy-ion physics at LHC“. Journal of Physics G: Nuclear and Particle Physics 30, Nr. 8 (20.07.2004): S903—S909. http://dx.doi.org/10.1088/0954-3899/30/8/032.
Der volle Inhalt der QuelleAntinori, Federico, und the ALICE Collaboration. „Heavy-ion physics with ALICE“. Journal of Physics G: Nuclear and Particle Physics 34, Nr. 8 (06.07.2007): S511—S518. http://dx.doi.org/10.1088/0954-3899/34/8/s41.
Der volle Inhalt der QuelleBetts, R. R., und the CMS Collaboration. „Heavy-ion physics with CMS“. Journal of Physics G: Nuclear and Particle Physics 34, Nr. 8 (06.07.2007): S519—S526. http://dx.doi.org/10.1088/0954-3899/34/8/s42.
Der volle Inhalt der QuelleSchutz, Yves. „Heavy-Ion Physics at LHC“. Journal of Physics: Conference Series 50 (01.11.2006): 289–92. http://dx.doi.org/10.1088/1742-6596/50/1/034.
Der volle Inhalt der QuelleMonroe, Christopher, und John Bollinger. „Atomic physics in ion traps“. Physics World 10, Nr. 3 (März 1997): 37–42. http://dx.doi.org/10.1088/2058-7058/10/3/22.
Der volle Inhalt der QuelleRangel, Murilo. „Heavy ion physics at LHCb“. Journal of Physics: Conference Series 706 (April 2016): 042014. http://dx.doi.org/10.1088/1742-6596/706/4/042014.
Der volle Inhalt der QuelleMaurice, Émilie. „Heavy ion physics at LHCb“. EPJ Web of Conferences 182 (2018): 02085. http://dx.doi.org/10.1051/epjconf/201818202085.
Der volle Inhalt der QuelleDissertationen zum Thema "Ion physics"
Hughes, Ian G. „Electron ion and ion-ion collisions“. Thesis, Queen's University Belfast, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335410.
Der volle Inhalt der QuelleKelly, Gregory J. „Negative ion production from positive ions incident in a metal vapour“. Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/22416.
Der volle Inhalt der QuelleFisher, Zachary (Zachary Kenneth). „Shuttling of ions for characterization of a microfabricated ion trap“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78510.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 65-67).
In this thesis, I present experimental results demonstrating the characterization of a planar Paul trap. I discuss the theory of ion trapping and analyze the voltages required for shuttling. Next, the characteristics of a digital-to-analog converter (DAC) are calibrated, and this instrument is integrated into trapping experiments to test the viability of the analytic model. Combining theory with the capabilities of the DAC, I calculate that the new experimental system is capable of 3 nm-precision control of the ion. Taking advantage of this ion control, I present initial results for a lock-in micromotion detection method which minimizes stray fields around an ⁸⁸Sr+ ion using Fourier analysis on the ion fluorescence to detect resonance at the secular frequencies. This method drives the ion oscillator across resonance using a superimposed radiofrequency electric field, which allows for off-axis field measurements as well as trap characterization. With this method, the secular frequencies of the trap are measured and are observed to fall within 3.50[sigma] of the analytic prediction.
by Zachary Fisher.
S.B.
Holden, Nicola Kathleen. „Atmospheric ion measurements using novel high resolution ion mobility spectrometers“. Thesis, University of the West of England, Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288184.
Der volle Inhalt der QuelleKellerbauer, Alban. „Production of a cooled ion beam by manipulation of 60-keV ions into a radio-frequency quadrupole ion guide“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/MQ50804.pdf.
Der volle Inhalt der QuelleLabaziewicz, Jarosław. „High fidelity quantum gates with ions in cryogenic microfabricated ion traps“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45167.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 135-146).
While quantum information processing offers a tantalizing possibility of a significant speedup in execution of certain algorithms, as well as enabling previously unmanageable simulations of large quantum systems, it remains extremely difficult to realize experimentally. Recently, fundamental building blocks of a quantum computer, including one and two qubit gates, teleportation and error correction, were demonstrated using trapped atomic ions. Scaling to a larger number of qubits requires miniaturization of the ion traps, currently limited by the sharply increasing motional state decoherence at sub-100 [mu]m ion-electrode distances. This thesis explores the source and suppression of this decoherence at cryogenic temperatures, and demonstrates fundamental logic gates in a surface electrode ion trap. Construction of the apparatus requires the development of a number of experimental techniques. Design, numerical simulation and implementation of a surface electrode ion trap is presented. Cryogenic cooling of the trap to near 4 K is accomplished by contact with a bath cryostat. Ions are loaded by ablation or photoionization, both of which are characterized in terms of generated stray fields and heat load. The bulk of new experimental results deals with measurements of electric field noise at the ion's position. Upon cooling to 6 K, the measured rates are suppressed by up to 7 orders of magnitude, more than two orders of magnitude below previously published data for similarly sized traps operated at room temperature. The observed noise depends strongly on fabrication process, which suggests further improvements are possible. The measured dependence of the electric field noise on temperature is inconsistent with published models, and can be explained using a continuous spectrum of activated fluctuators. The fabricated surface electrode traps are used to demonstrate coherent operations and the classical control required for trapped ion quantum computation. The necessary spectral properties of coherent light sources are achieved with a novel design using optical feedback to a triangular, medium finesse, cavity, followed by electronic feedback to an ultra-high finesse reference cavity.
(cont.) Single and two qubit operations on a single ion are demonstrated with classical fidelity in excess of 95%. Magnetic field gradient coils built into the trap allow for individual addressing of ions, a prerequisite to scaling to multiple qubits.
by Jarosław Labaziewicz.
Ph.D.
Segal, Matthew. „Development of an ion transport system for singly charged ion injection into an electron string ion source (ESIS) charge-breeder“. Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33024.
Der volle Inhalt der QuelleMcGuinness, Philip. „Electron-ion elastic collisions“. Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268236.
Der volle Inhalt der QuelleBoudreault, Ghislain. „Accurate ion beam analysis“. Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/844001/.
Der volle Inhalt der QuelleSterling, Robin C. „Ytterbium ion trapping and microfabrication of ion trap arrays“. Thesis, University of Sussex, 2012. http://sro.sussex.ac.uk/id/eprint/39684/.
Der volle Inhalt der QuelleBücher zum Thema "Ion physics"
Brouillard, F. Atomic Processes in Electron-Ion and Ion-Ion Collisions. Boston, MA: Springer US, 1987.
Den vollen Inhalt der Quelle findenStock, R., Hrsg. Relativistic Heavy Ion Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01539-7.
Der volle Inhalt der QuelleP, Csernai L., und Strottman D, Hrsg. Relativistic heavy ion physics. Singapore: World Scientific, 1991.
Den vollen Inhalt der Quelle findenP, Csernai L., und Strottman D, Hrsg. Relativistic heavy ion physics. Singapore: World Scientific, 1991.
Den vollen Inhalt der Quelle findenMathur, Deepak, Hrsg. Physics of Ion Impact Phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84350-1.
Der volle Inhalt der Quelle1952-, Mathur Deepak, Hrsg. Physics of ion impact phenomena. Berlin: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenBystrit͡skiĭ, V. M. High-power ion beams. New York: American Institute of Physics, 1989.
Den vollen Inhalt der Quelle findenOrloff, Jon. High Resolution Focused Ion Beams: FIB and its Applications: The Physics of Liquid Metal Ion Sources and Ion Optics and Their Application to Focused Ion Beam Technology. Boston, MA: Springer US, 2003.
Den vollen Inhalt der Quelle finden1937-, Brouillard F., und North Atlantic Treaty Organization. Scientific Affairs Division., Hrsg. Atomic processes in electron-ion and ion-ion collisions. New York: Plenum Press, 1986.
Den vollen Inhalt der Quelle findenBartke, J. Introduction to relativistic heavy ion physics. Singapore: World Scientific, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ion physics"
Egelhof, P., und S. Kraft-Bermuth. „Heavy Ion Physics“. In Topics in Applied Physics, 469–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/10933596_11.
Der volle Inhalt der QuellePowell, Richard C. „Ion-Ion Interactions“. In Physics of Solid-State Laser Materials, 175–214. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0643-9_5.
Der volle Inhalt der QuelleMacchi, Andrea. „Ion Acceleration“. In SpringerBriefs in Physics, 81–106. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6125-4_5.
Der volle Inhalt der QuelleTrassl, R. „Ion-Ion Collisions“. In The Physics of Multiply and Highly Charged Ions, 369–95. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0544-8_12.
Der volle Inhalt der QuelleFlannery, M. „Electron-Ion and Ion-Ion Recombination“. In Springer Handbook of Atomic, Molecular, and Optical Physics, 799–827. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-26308-3_54.
Der volle Inhalt der QuelleObertelli, Alexandre, und Hiroyuki Sagawa. „Radioactive-Ion-Beam Physics“. In Modern Nuclear Physics, 371–459. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2289-2_6.
Der volle Inhalt der QuellePresnyakov, Leonid P., E. Salzborn und H. Tawara. „Rearrangement Reactions in Ion-Ion Interactions“. In Atomic Physics with Heavy Ions, 349–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58580-7_16.
Der volle Inhalt der QuelleIppolito, N., F. Taccogna, P. Minelli, V. Variale und N. Colonna. „RF Negative Ion Sources and Polarized Ion Sources“. In Springer Proceedings in Physics, 145–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39471-8_12.
Der volle Inhalt der QuelleGray, George A. „Ion Cyclotronc Resonance“. In Advances in Chemical Physics, 141–207. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143674.ch3.
Der volle Inhalt der QuelleMoseley, John T. „Ion Photofragment Spectroscopy“. In Advances in Chemical Physics, 245–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470142844.ch6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ion physics"
Saitou, Y. „Effect of Light Ions on Ion-Ion Instability“. In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593853.
Der volle Inhalt der QuelleOganessian, Yu Ts, und R. Kalpakchieva. „Heavy Ion Physics“. In VI International School-Seminar. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528375.
Der volle Inhalt der QuelleChurch, D. A. „Photoionization of ions and ion-atom charge transfer studies using synchrotron radiation and ion traps“. In CAM-94 Physics meeting. AIP, 1995. http://dx.doi.org/10.1063/1.48818.
Der volle Inhalt der QuelleTroshin, S. M., Donald G. Crabb, Yelena Prok, Matt Poelker, Simonetta Liuti, Donal B. Day und Xiaochao Zheng. „Polarization in Heavy Ion Physics“. In SPIN PHYSICS: 18th International Spin Physics Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3215618.
Der volle Inhalt der QuelleYadav, Lakhan Lal. „Ion-Acoustic Cnoidal Waves In A Plasma With Negative Ions“. In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1594021.
Der volle Inhalt der QuellePozdeyev, E., D. Kayran, V. N. Litvinenko, Donald G. Crabb, Yelena Prok, Matt Poelker, Simonetta Liuti, Donal B. Day und Xiaochao Zheng. „Ion bombardment in RF guns“. In SPIN PHYSICS: 18th International Spin Physics Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3215603.
Der volle Inhalt der QuelleBondarev, B. I., A. P. Durkin, G. T. Nicolaishvili und O. Yu Shlygin. „Multi-ion transport system“. In Computational accelerator physics. AIP, 1993. http://dx.doi.org/10.1063/1.45361.
Der volle Inhalt der QuelleHansknecht, J., P. Adderley, M. L. Stutzman, M. Poelker, Donald G. Crabb, Yelena Prok, Matt Poelker, Simonetta Liuti, Donal B. Day und Xiaochao Zheng. „Sensitive Ion Pump Current Monitoring Using an In-House Built Ion Pump Power Supply“. In SPIN PHYSICS: 18th International Spin Physics Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3215609.
Der volle Inhalt der QuelleVALENTI, G. „HEAVY ION PHYSICS AT LHC“. In Proceedings of the XXXI International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778048_0026.
Der volle Inhalt der QuelleIshihara, M., T. Fukuda und C. Signorini. „Perspectives in Heavy Ion Physics“. In 2nd Japan–Italy Joint Symposium '95. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814532044.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ion physics"
Hill, J. C., und F. K. Wohn. Relativistic heavy ion physics. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5166378.
Der volle Inhalt der QuelleSanders, S. J., und F. W. Prosser. Research in heavy-ion nuclear physics. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5133546.
Der volle Inhalt der QuelleBraithwaite, W. J. Ultra-Relativistic Heavy Ion Nuclear Physics. Office of Scientific and Technical Information (OSTI), Mai 1995. http://dx.doi.org/10.2172/7133.
Der volle Inhalt der QuelleKozub, Raymond L. Nuclear physics with radioactive ion beams. Office of Scientific and Technical Information (OSTI), Juli 2015. http://dx.doi.org/10.2172/1196824.
Der volle Inhalt der QuelleBassalleck, Bernd, und Douglas Fields. Strange Particles and Heavy Ion Physics. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1249212.
Der volle Inhalt der QuelleHoffmann, Gerald W., und Christina Markert. Studies in High Energy Heavy Ion Nuclear Physics. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1324626.
Der volle Inhalt der QuelleCherney, M. [Heavy ion physics research at Creighton University]. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/6189222.
Der volle Inhalt der QuelleSanders, S. J., und F. W. Prosser. (Detector development and research in heavy-ion nuclear physics). Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/5010879.
Der volle Inhalt der QuelleSoltz, R., und A. Angerami. LLNL Relativistic Heavy-Ion Physics FY19 Annual Report. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569181.
Der volle Inhalt der QuelleColeman, Joshua Eugene. Intense Ion Beam for Warm Dense Matter Physics. Office of Scientific and Technical Information (OSTI), Januar 2008. http://dx.doi.org/10.2172/929701.
Der volle Inhalt der Quelle