Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Inverted structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inverted structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Inverted structure"
Bowie, James U., und David Eisenberg. „Inverted protein structure prediction“. Current Opinion in Structural Biology 3, Nr. 3 (Juni 1993): 437–44. http://dx.doi.org/10.1016/s0959-440x(05)80118-6.
Der volle Inhalt der QuelleAnh, N. D., und N. X. Nguyen. „A global-local approach to the design of dynamic vibration absorber for damped inverted pendulum structures“. Vietnam Journal of Mechanics 37, Nr. 1 (27.02.2015): 57–70. http://dx.doi.org/10.15625/0866-7136/37/1/5865.
Der volle Inhalt der QuelleOhyama, Takako, Hazuki Takahashi, Harshita Sharma, Toshio Yamazaki, Stefano Gustincich, Yoshitaka Ishii und Piero Carninci. „An NMR-based approach reveals the core structure of the functional domain of SINEUP lncRNAs“. Nucleic Acids Research 48, Nr. 16 (22.07.2020): 9346–60. http://dx.doi.org/10.1093/nar/gkaa598.
Der volle Inhalt der QuelleJi, Dong Yu, und Wen Liang Ma. „Force Calculation of Shunqiao Trench-Buried Inverted Siphon Structure“. Advanced Materials Research 295-297 (Juli 2011): 2396–99. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.2396.
Der volle Inhalt der QuelleKihlborg, L., und M. Sundberg. „`Inverted Twinning' in Intergrowth Tungsten Bronzes“. Acta Crystallographica Section B Structural Science 53, Nr. 1 (01.02.1997): 95–101. http://dx.doi.org/10.1107/s010876819601155x.
Der volle Inhalt der QuelleRen, Zhen. „Study on Structure Analysis of Prestressed Reinforced Concrete Inverted Siphon“. Applied Mechanics and Materials 488-489 (Januar 2014): 585–88. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.585.
Der volle Inhalt der QuelleJi, Dong Yu. „Analysis and Research of Luo River Inverted Siphon Structure“. Advanced Materials Research 787 (September 2013): 808–11. http://dx.doi.org/10.4028/www.scientific.net/amr.787.808.
Der volle Inhalt der QuelleLiu, Chuan Xiao, Long Wang, Zhi Hao Liu und Xiu Li Zhang. „Application and Mechanism to Support Tunnel Adjoining with Soft Rock Masses by Yielding Inverted Arch of Composite Structures“. Applied Mechanics and Materials 90-93 (September 2011): 791–94. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.791.
Der volle Inhalt der QuelleJi, Dong Yu. „Structure Design and Finite Element Analysis of Liujiaba Inverted Siphon“. Applied Mechanics and Materials 716-717 (Dezember 2014): 553–56. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.553.
Der volle Inhalt der QuelleDu, Pei Rong, und Xiao Fen Li. „Structure Design and Force Analysis of Dushan Inverted Siphon Engineering“. Advanced Materials Research 391-392 (Dezember 2011): 759–62. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.759.
Der volle Inhalt der QuelleDissertationen zum Thema "Inverted structure"
Alqurashi, Rania. „Interface electronic structure of inverted polymer solar cells“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19062/.
Der volle Inhalt der QuelleLindsjö, Martin. „Inverted Zintl phases and ions - A search for new electronic properties“. Licentiate thesis, KTH, Chemistry, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1488.
Der volle Inhalt der QuelleSternadori, Miglena Wise Kevin Robert. „Cognitive processing of news as a function of structure a comparison between inverted pyramid and chronology /“. Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/6643.
Der volle Inhalt der QuelleLiu, Xilan. „Polymer Photodetectors: Device Structure, Interlayer and Physics“. University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384334220.
Der volle Inhalt der QuelleCortes, Avellaneda Douglas D. „Inverted base pavement structures“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37305.
Der volle Inhalt der QuelleIrakarama, Modeste. „Towards Reducing Structural Interpretation Uncertainties Using Seismic Data“. Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0060/document.
Der volle Inhalt der QuelleSubsurface structural models are routinely used for resource estimation, numerical simulations, and risk management; it is therefore important that subsurface models represent the geometry of geological objects accurately. The first step in building a subsurface model is usually to interpret structural features, such as faults and horizons, from a seismic image; the identified structural features are then used to build a subsurface model using interpolation methods. Subsurface models built this way therefore inherit interpretation uncertainties since a single seismic image often supports multiple structural interpretations. In this manuscript, I study the problem of reducing interpretation uncertainties using seismic data. In particular, I study the problem of using seismic data to determine which structural models are more likely than others in an ensemble of geologically plausible structural models. I refer to this problem as "appraising structural models using seismic data". I introduce and formalize the problem of appraising structural interpretations using seismic data. I propose to solve the problem by generating synthetic data for each structural interpretation and then to compute misfit values for each interpretation; this allows us to rank the different structural interpretations. The main challenge of appraising structural models using seismic data is to propose appropriate data misfit functions. I derive a set of conditions that have to be satisfied by the data misfit function for a successful appraisal of structural models. I argue that since it is not possible to satisfy these conditions using vertical seismic profile (VSP) data, it is not possible to appraise structural interpretations using VSP data in the most general case. The conditions imposed on the data misfit function can in principle be satisfied for surface seismic data. In practice, however, it remains a challenge to propose and compute data misfit functions that satisfy those conditions. I conclude the manuscript by highlighting practical issues of appraising structural interpretations using surface seismic data. I propose a general data misfit function that is made of two main components: (1) a residual operator that computes data residuals, and (2) a projection operator that projects the data residuals from the data-space into the image-domain. This misfit function is therefore localized in space, as it outputs data misfit values in the image-domain. However, I am still unable to propose a practical implementation of this misfit function that satisfies the conditions imposed for a successful appraisal of structural interpretations; this is a subject for further research
Bittencourt, Marcelo Corrêa de. „Comparing different and inverter graph data structure“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/185987.
Der volle Inhalt der QuelleThis document presents a performance analysis of four different And-Inverter Graph (AIG) implementations. AIG is a data structure commonly used in programs used for digital circuits design. Different implementations of the same data structure can affect performance. This is demonstrated by previous works that evaluate performance for different Binary Decision Diagram (BDD) packages, another data structure widely used in logic synthesis. We have implemented four distinct AIG data structures using a choice of unidirectional or bidirectional graphs in which the references to nodes are made using pointers or indexed using non-negative integers. Using these different AIG data structures, we measure how different implementation aspects affect performance in running basic algorithm.
Kefal, Adnan. „Structural health monitoring of marine structures by using inverse finite element method“. Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27863.
Der volle Inhalt der QuelleZhu, Qing. „Semiconductor vertical quantum structures self-formed in inverted pyramids /“. Lausanne : EPFL, 2008. http://library.epfl.ch/theses/?nr=4145.
Der volle Inhalt der QuelleBabincová, Kristina. „Pasivace aktivní vrstvy perovskitových solárních článků s invertovanou strukturou“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444540.
Der volle Inhalt der QuelleBücher zum Thema "Inverted structure"
El Hami, Abdelkhalak, und Bouchaib Radi. Dynamics of Large Structures and Inverse Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119332275.
Der volle Inhalt der QuelleTakewaki, Izuru. Dynamic structural design: Inverse problem approach. Southampton: WIT Press, 2000.
Den vollen Inhalt der Quelle findenBanks, H. Thomas. Analytic semigroups: applications to inverse problems for flexible structures. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Den vollen Inhalt der Quelle findenBanks, H. Thomas. Analytic semigroups: Applications to inverse problems for flexible structures. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenKuramoto, Y. Dynamics of one-dimensional quantum systems: Inverse-square interaction models. Cambridge, UK: Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenKuramoto, Y. Dynamics of one-dimensional quantum systems: Inverse-square interaction models. Cambridge: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle finden1929-, Kato Y., Hrsg. Dynamics of one-dimensional quantum systems: Inverse-square interaction models. Cambridge, UK: Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenInverse analyses with model reduction: Proper orthogonal decomposition in structural mechanics. Berlin: Springer, 2012.
Den vollen Inhalt der Quelle findenSavenkoff, Claude. Inverse analysis of the structure and dynamics of the whole Newfoundland-Labrador shelf ecosystem. [Ottawa?: Fisheries and Oceans], 2001.
Den vollen Inhalt der Quelle findenMira, Mitra, Hrsg. Wavelet methods for dynamical problems: With application to metallic, composite, and nano-composite structures. Boca Raton: Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Inverted structure"
Torres-Parejo, Úrsula, Jesús R. Campaña, Maria-Amparo Vila und Miguel Delgado. „Obtaining WAPO-Structure Through Inverted Indexes“. In Communications in Computer and Information Science, 647–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91476-3_53.
Der volle Inhalt der QuelleYou, Jingbi, Lei Meng, Ziruo Hong, Gang Li und Yang Yang. „Inverted Planar Structure of Perovskite Solar Cells“. In Organic-Inorganic Halide Perovskite Photovoltaics, 307–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_12.
Der volle Inhalt der QuelleKumar, Satyendra, und Moina Ajmeri. „Stabilizing x–y Inverted Pendulum via Variable Structure Control“. In Lecture Notes in Mechanical Engineering, 553–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4018-3_52.
Der volle Inhalt der QuelleAgrawal, Rahul, und R. Mitra. „Adaptive Neuro Fuzzy Inference Structure Controller for Rotary Inverted Pendulum“. In Advances in Intelligent Systems and Computing, 1163–70. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-0740-5_141.
Der volle Inhalt der QuelleAramini, James M., Johan H. van de Sande und Markus W. Germann. „Structure and Stability of DNA Containing Inverted Anomeric Centers and Polarity Reversals“. In ACS Symposium Series, 92–105. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1998-0682.ch006.
Der volle Inhalt der QuelleSee, Chan H., George A. Oguntala, Wafa Shuaieb, J. M. Noras und Peter S. Excell. „Dual-Band Planar Inverted F-L Antenna Structure for Bluetooth and ZigBee Applications“. In Antenna Fundamentals for Legacy Mobile Applications and Beyond, 39–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63967-3_2.
Der volle Inhalt der QuelleOak, Chinmay N., und S. Sundar Kumar Iyer. „Effect of Pulsed Electric Field Annealing on P3HT: PCBM Inverted Solar Cell Structure“. In Springer Proceedings in Physics, 117–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_19.
Der volle Inhalt der QuelleHossain, Shahriyar, und Hasan Jamil. „A Hybrid Index Structure for Set-Valued Attributes Using Itemset Tree and Inverted List“. In Lecture Notes in Computer Science, 349–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15364-8_30.
Der volle Inhalt der QuellePathania, K. „Empirical Estimates of Inverted Duty Structure and Effective Rate of Protection—The Case of India“. In Trade, Investment and Economic Growth, 3–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6973-3_1.
Der volle Inhalt der QuelleZhang, SuYing, ShuMan Shao, Ran An, Sun Feng und Yun Du. „The Sliding Mode Variable Structure Control for Double Inverted Pendulum System Based on Fuzzy Reaching Law“. In Lecture Notes in Electrical Engineering, 123–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27287-5_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Inverted structure"
Takemura, N., A. Maruyama und M. Hasegawa. „Inverted-FL antenna with self-complementary structure“. In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619339.
Der volle Inhalt der QuelleWu, Jun-feng, Chun-tao Liu und Yong Deng. „Variable Structure Control for Stabilizing Double Inverted Pendulum“. In 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2008. http://dx.doi.org/10.1109/icicta.2008.307.
Der volle Inhalt der QuelleCai, Shubin, Heming Chen, Zhijiao Xiao und Zhong Ming. „An efficient block structure for incremental inverted indexing“. In 2012 IEEE International Conference on Information Science and Technology (ICIST). IEEE, 2012. http://dx.doi.org/10.1109/icist.2012.6221735.
Der volle Inhalt der QuelleMatsubayashi, Kazuya, Naobumi Michishita und Hisashi Morishita. „Monocone Antenna with Inverted -L and -F Structure“. In 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2019. http://dx.doi.org/10.1109/apwc.2019.8870487.
Der volle Inhalt der QuelleLiu, Keding, und Zhichao Yang. „Finite Element Analysis of Shaba Inverted Siphon Structure“. In 2014 International Conference on Mechatronics, Electronic, Industrial and Control Engineering. Paris, France: Atlantis Press, 2014. http://dx.doi.org/10.2991/meic-14.2014.268.
Der volle Inhalt der QuelleVolkova, Galina, und Natalia Yudina. „Effect of resin-asphaltene substances on the stability of inverted emulsions“. In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083566.
Der volle Inhalt der QuelleKaushik, Raghav, Rajasekar Krishnamurthy, Jeffrey F. Naughton und Raghu Ramakrishnan. „On the integration of structure indexes and inverted lists“. In the 2004 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007568.1007656.
Der volle Inhalt der QuelleLiu, Keding, und Ruijun Zhang. „Structure design and analysis of reinforced concrete inverted siphon“. In 2013 2nd International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA). IEEE, 2013. http://dx.doi.org/10.1109/imsna.2013.6743280.
Der volle Inhalt der QuelleJianhua Zhang. „Structure force analysis of Shangjiao trench-buried inverted siphon“. In 2012 7th International Conference on System of Systems Engineering (SoSE). IEEE, 2012. http://dx.doi.org/10.1109/sysose.2012.6333634.
Der volle Inhalt der QuelleTakemura, Nobuyasu. „Electromagnetically coupled inverted-FL antenna with self-complementary structure“. In 2009 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2009. http://dx.doi.org/10.1109/aps.2009.5171968.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Inverted structure"
Lambrakos, S. G., und N. E. Tran. Inverse Analysis of Cavitation Impact Phenomena on Structures. Fort Belvoir, VA: Defense Technical Information Center, Juli 2007. http://dx.doi.org/10.21236/ada471244.
Der volle Inhalt der QuelleKovalenkov, A. N., S. M. Semchenkov und M. S. Makarov. Spatial inverse filtering method based on a controlled structure filter. OFERNIO, November 2020. http://dx.doi.org/10.12731/ofernio.2020.24671.
Der volle Inhalt der QuelleBeratan, David N., Weitao Yang, Michael J. Therien und Koen Clays. Sculpting Molecular Potentials to Design Optimized Materials: The Inverse Design of New Molecular Structures. Fort Belvoir, VA: Defense Technical Information Center, Mai 2010. http://dx.doi.org/10.21236/ada532541.
Der volle Inhalt der QuelleYu, Guoshen, Guillermo Sapiro und Stephane Mallat. Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity. Fort Belvoir, VA: Defense Technical Information Center, Juni 2010. http://dx.doi.org/10.21236/ada540722.
Der volle Inhalt der QuelleBrenner, D. S., R. L. Gill, R. F. Casten, C. J. Barton und N. V. Zamfir. Structure and collectivity very far from stability: Coulomb excitation of radioactive nuclear beams in inverse kinematics. Office of Scientific and Technical Information (OSTI), Juli 1995. http://dx.doi.org/10.2172/88543.
Der volle Inhalt der QuelleBrigham, John C. Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ad1013215.
Der volle Inhalt der QuellePaden, Brad, und Thomas A. Trautt. Characterization of Joint Nonlinear Stiffness and Damping Behavior for Inverse Dynamics of Flexible Articulated Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada330608.
Der volle Inhalt der Quelle