Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Inverse Uncertainty Quantification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inverse Uncertainty Quantification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Inverse Uncertainty Quantification"
Faes, Matthias, und David Moens. „Inverse Interval Field Quantification via Digital Image Correlation“. Applied Mechanics and Materials 885 (November 2018): 304–10. http://dx.doi.org/10.4028/www.scientific.net/amm.885.304.
Der volle Inhalt der QuelleTalarico, Erick Costa e. Silva, Dario Grana, Leandro Passos de Figueiredo und Sinesio Pesco. „Uncertainty quantification in seismic facies inversion“. GEOPHYSICS 85, Nr. 4 (24.06.2020): M43—M56. http://dx.doi.org/10.1190/geo2019-0392.1.
Der volle Inhalt der QuelleKhuwaileh, B. A., und H. S. Abdel-Khalik. „Subspace-based Inverse Uncertainty Quantification for Nuclear Data Assessment“. Nuclear Data Sheets 123 (Januar 2015): 57–61. http://dx.doi.org/10.1016/j.nds.2014.12.010.
Der volle Inhalt der QuelleTenorio, L., F. Andersson, M. de Hoop und P. Ma. „Data analysis tools for uncertainty quantification of inverse problems“. Inverse Problems 27, Nr. 4 (08.03.2011): 045001. http://dx.doi.org/10.1088/0266-5611/27/4/045001.
Der volle Inhalt der QuelleSethurajan, Athinthra, Sergey Krachkovskiy, Gillian Goward und Bartosz Protas. „Bayesian uncertainty quantification in inverse modeling of electrochemical systems“. Journal of Computational Chemistry 40, Nr. 5 (28.12.2018): 740–52. http://dx.doi.org/10.1002/jcc.25759.
Der volle Inhalt der QuelleHashemi, H., R. Berndtsson, M. Kompani-Zare und M. Persson. „Natural vs. artificial groundwater recharge, quantification through inverse modeling“. Hydrology and Earth System Sciences 17, Nr. 2 (11.02.2013): 637–50. http://dx.doi.org/10.5194/hess-17-637-2013.
Der volle Inhalt der QuelleHashemi, H., R. Berndtsson, M. Kompani-Zare und M. Persson. „Natural vs. artificial groundwater recharge, quantification through inverse modeling“. Hydrology and Earth System Sciences Discussions 9, Nr. 8 (24.08.2012): 9767–807. http://dx.doi.org/10.5194/hessd-9-9767-2012.
Der volle Inhalt der QuelleGrana, Dario, Leandro Passos de Figueiredo und Leonardo Azevedo. „Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction“. GEOPHYSICS 84, Nr. 6 (01.11.2019): M15—M24. http://dx.doi.org/10.1190/geo2019-0222.1.
Der volle Inhalt der QuelleDashti, M., und A. M. Stuart. „Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem“. SIAM Journal on Numerical Analysis 49, Nr. 6 (Januar 2011): 2524–42. http://dx.doi.org/10.1137/100814664.
Der volle Inhalt der QuelleAcar, Pınar. „Uncertainty Quantification for Ti-7Al Alloy Microstructure with an Inverse Analytical Model (AUQLin)“. Materials 12, Nr. 11 (31.05.2019): 1773. http://dx.doi.org/10.3390/ma12111773.
Der volle Inhalt der QuelleDissertationen zum Thema "Inverse Uncertainty Quantification"
Chue, Bryan C. „Efficient Hessian computation in inverse problems with application to uncertainty quantification“. Thesis, Boston University, 2013. https://hdl.handle.net/2144/21138.
Der volle Inhalt der QuelleThis thesis considers the efficient Hessian computation in inverse problems with specific application to the elastography inverse problem. Inverse problems use measurements of observable parameters to infer information about model parameters, and tend to be ill-posed. They are typically formulated and solved as regularized constrained optimization problems, whose solutions best fit the measured data. Approaching the same inverse problem from a probabilistic Bayesian perspective produces the same optimal point called the maximum a posterior (MAP) estimate of the parameter distribution, but also produces a posterior probability distribution of the parameter estimate, from which a measure of the solution's uncertainty may be obtained. This probability distribution is a very high dimensional function with which it can be difficult to work. For example, in a modest application with N = 104 optimization variables, representing this function with just three values in each direction requires 3^10000 U+2248 10^5000 variables, which far exceeds the number of atoms in the universe. The uncertainty of the MAP estimate describes the shape of the probability distribution and to leading order may be parameterized by the covariance. Directly calculating the Hessian and hence the covariance, requires O(N) solutions of the constraint equations. Given the size of the problems of interest (N = O(10^4 - 10^6)), this is impractical. Instead, an accurate approximation of the Hessian can be assembled using a Krylov basis. The ill-posed nature of inverse problems suggests that its Hessian has low rank and therefore can be approximated with relatively few Krylov vectors. This thesis proposes a method to calculate this Krylov basis in the process of determining the MAP estimate of the parameter distribution. Using the Krylov space based conjugate gradient (CG) method, the MAP estimate is computed. Minor modifications to the algorithm permit storage of the Krylov approximation of the Hessian. As the accuracy of the Hessian approximation is directly related to the Krylov basis, long term orthogonality amongst the basis vectors is maintained via full reorthogonalization. Upon reaching the MAP estimate, the method produces a low rank approximation of the Hessian that can be used to compute the covariance.
2031-01-01
Hebbur, Venkata Subba Rao Vishwas. „Adjoint based solution and uncertainty quantification techniques for variational inverse problems“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/76665.
Der volle Inhalt der QuellePh. D.
Devathi, Duttaabhinivesh. „Uncertainty Quantification for Underdetermined Inverse Problems via Krylov Subspace Iterative Solvers“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case155446130705089.
Der volle Inhalt der QuelleAndersson, Hjalmar. „Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods“. Thesis, Uppsala universitet, Tillämpad kärnfysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447070.
Der volle Inhalt der QuelleLal, Rajnesh. „Data assimilation and uncertainty quantification in cardiovascular biomechanics“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS088/document.
Der volle Inhalt der QuelleCardiovascular blood flow simulations can fill several critical gaps in current clinical capabilities. They offer non-invasive ways to quantify hemodynamics in the heart and major blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from medical imaging. Patient-specific simulations (incorporating data unique to the individual) enable individualised risk prediction, provide key insights into disease progression and/or abnormal physiologic detection. They also provide means to systematically design and test new medical devices, and are used as predictive tools to surgical and personalize treatment planning and, thus aid in clinical decision-making. Patient-specific predictive simulations require effective assimilation of medical data for reliable simulated predictions. This is usually achieved by the solution of an inverse hemodynamic problem, where uncertain model parameters are estimated using the techniques for merging data and numerical models known as data assimilation methods.In this thesis, the inverse problem is solved through a data assimilation method using an ensemble Kalman filter (EnKF) for parameter estimation. By using an ensemble Kalman filter, the solution also comes with a quantification of the uncertainties for the estimated parameters. An ensemble Kalman filter-based parameter estimation algorithm is proposed for patient-specific hemodynamic computations in a schematic arterial network from uncertain clinical measurements. Several in silico scenarii (using synthetic data) are considered to investigate the efficiency of the parameter estimation algorithm using EnKF. The usefulness of the parameter estimation algorithm is also assessed using experimental data from an in vitro test rig and actual real clinical data from a volunteer (patient-specific case). The proposed algorithm is evaluated on arterial networks which include single arteries, cases of bifurcation, a simple human arterial network and a complex arterial network including the circle of Willis.The ultimate aim is to perform patient-specific hemodynamic analysis in the network of the circle of Willis. Common hemodynamic properties (parameters), like arterial wall properties (Young’s modulus, wall thickness, and viscoelastic coefficient) and terminal boundary parameters (reflection coefficient and Windkessel model parameters) are estimated as the solution to an inverse problem using time series pressure values and blood flow rate as measurements. It is also demonstrated that a proper reduced order zero-dimensional compartment model can lead to a simple and reliable estimation of blood flow features in the circle of Willis. The simulations with the estimated parameters capture target pressure or flow rate waveforms at given specific locations
Narayanamurthi, Mahesh. „Advanced Time Integration Methods with Applications to Simulation, Inverse Problems, and Uncertainty Quantification“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104357.
Der volle Inhalt der QuelleDoctor of Philosophy
The study of modern science and engineering begins with descriptions of a system of mathematical equations (a model). Different models require different techniques to both accurately and effectively solve them on a computer. In this dissertation, we focus on developing novel mathematical solvers for models expressed as a system of equations, where only the initial state and the rate of change of state as a function are known. The solvers we develop can be used to both forecast the behavior of the system and to optimize its characteristics to achieve specific goals. We also build methodologies to estimate and control errors introduced by mathematical solvers in obtaining a solution for models involving multiple interacting physical, chemical, or biological phenomena. Our solvers build on state of the art in the research community by introducing new approximations that exploit the underlying mathematical structure of a model. Where it is necessary, we provide concrete mathematical proofs to validate theoretically the correctness of the approximations we introduce and correlate with follow-up experiments. We also present detailed descriptions of the procedure for implementing each mathematical solver that we develop throughout the dissertation while emphasizing on means to obtain maximal performance from the solver. We demonstrate significant performance improvements on a range of models that serve as running examples, describing chemical reactions among distinct species as they diffuse over a surface medium. Also provided are results and procedures that a curious researcher can use to advance the ideas presented in the dissertation to other types of solvers that we have not considered. Research on mathematical solvers for different mathematical models is rich and rewarding with numerous open-ended questions and is a critical component in the progress of modern science and engineering.
Ray, Kolyan Michael. „Asymptotic theory for Bayesian nonparametric procedures in inverse problems“. Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/278387.
Der volle Inhalt der QuelleAlhossen, Iman. „Méthode d'analyse de sensibilité et propagation inverse d'incertitude appliquées sur les modèles mathématiques dans les applications d'ingénierie“. Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30314/document.
Der volle Inhalt der QuelleApproaches for studying uncertainty are of great necessity in all disciplines. While the forward propagation of uncertainty has been investigated extensively, the backward propagation is still under studied. In this thesis, a new method for backward propagation of uncertainty is presented. The aim of this method is to determine the input uncertainty starting from the given data of the uncertain output. In parallel, sensitivity analysis methods are also of great necessity in revealing the influence of the inputs on the output in any modeling process. This helps in revealing the most significant inputs to be carried in an uncertainty study. In this work, the Sobol sensitivity analysis method, which is one of the most efficient global sensitivity analysis methods, is considered and its application framework is developed. This method relies on the computation of sensitivity indexes, called Sobol indexes. These indexes give the effect of the inputs on the output. Usually inputs in Sobol method are considered to vary as continuous random variables in order to compute the corresponding indexes. In this work, the Sobol method is demonstrated to give reliable results even when applied in the discrete case. In addition, another advancement for the application of the Sobol method is done by studying the variation of these indexes with respect to some factors of the model or some experimental conditions. The consequences and conclusions derived from the study of this variation help in determining different characteristics and information about the inputs. Moreover, these inferences allow the indication of the best experimental conditions at which estimation of the inputs can be done
Gehre, Matthias [Verfasser], Peter [Akademischer Betreuer] Maaß und Bangti [Akademischer Betreuer] Jin. „Rapid Uncertainty Quantification for Nonlinear Inverse Problems / Matthias Gehre. Gutachter: Peter Maaß ; Bangti Jin. Betreuer: Peter Maaß“. Bremen : Staats- und Universitätsbibliothek Bremen, 2013. http://d-nb.info/1072078589/34.
Der volle Inhalt der QuelleKamilis, Dimitrios. „Uncertainty Quantification for low-frequency Maxwell equations with stochastic conductivity models“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31415.
Der volle Inhalt der QuelleBücher zum Thema "Inverse Uncertainty Quantification"
Large-scale inverse problems and quantification of uncertainty. Hoboken, N.J: Wiley, 2010.
Den vollen Inhalt der Quelle findenBiegler, Lorenz, George Biros, Omar Ghattas, Matthias Heinkenschloss und Bani Mallick. Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley & Sons, Incorporated, John, 2010.
Den vollen Inhalt der Quelle findenBiegler, Lorenz, George Biros, Omar Ghattas, Matthias Heinkenschloss und Bani Mallick. Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenBiegler, Lorenz, George Biros, Omar Ghattas, Matthias Heinkenschloss und Bani Mallick. Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenBiegler, Lorenz, George Biros, Omar Ghattas, Matthias Heinkenschloss, David Keyes, Bani Mallick, Youssef Marzouk, Luis Tenorio, Bart van Bloemen Waanders und Karen Willcox, Hrsg. Large‐Scale Inverse Problems and Quantification of Uncertainty. Wiley, 2010. http://dx.doi.org/10.1002/9780470685853.
Der volle Inhalt der QuelleBuchteile zum Thema "Inverse Uncertainty Quantification"
Soize, Christian. „Fundamental Tools for Statistical Inverse Problems“. In Uncertainty Quantification, 141–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_7.
Der volle Inhalt der QuelleDashti, Masoumeh, und Andrew M. Stuart. „The Bayesian Approach to Inverse Problems“. In Handbook of Uncertainty Quantification, 311–428. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12385-1_7.
Der volle Inhalt der QuelleDashti, Masoumeh, und Andrew M. Stuart. „The Bayesian Approach to Inverse Problems“. In Handbook of Uncertainty Quantification, 1–118. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11259-6_7-1.
Der volle Inhalt der QuelleSoize, Christian. „Random Vectors and Random Fields in High Dimension: Parametric Model-Based Representation, Identification from Data, and Inverse Problems“. In Handbook of Uncertainty Quantification, 883–935. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12385-1_30.
Der volle Inhalt der QuelleSoize, Christian. „Random Vectors and Random Fields in High Dimension: Parametric Model-Based Representation, Identification from Data, and Inverse Problems“. In Handbook of Uncertainty Quantification, 1–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11259-6_30-1.
Der volle Inhalt der QuelleKitanidis, P. K. „Bayesian and Geostatistical Approaches to Inverse Problems“. In Large-Scale Inverse Problems and Quantification of Uncertainty, 71–85. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470685853.ch4.
Der volle Inhalt der QuelleSandu, A. „Solution of Inverse Problems using Discrete ODE Adjoints“. In Large-Scale Inverse Problems and Quantification of Uncertainty, 345–65. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470685853.ch16.
Der volle Inhalt der QuelleQiao, Baijie, Zhu Mao, Jinxin Liu und Xuefeng Chen. „Sparse Deconvolution for the Inverse Problem of Multiple-Impact Force Identification“. In Model Validation and Uncertainty Quantification, Volume 3, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74793-4_1.
Der volle Inhalt der QuelleDelbos, F., C. Duffet und D. Sinoquet. „Uncertainty Analysis for Seismic Inverse Problems: Two Practical Examples“. In Large-Scale Inverse Problems and Quantification of Uncertainty, 321–43. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470685853.ch15.
Der volle Inhalt der QuelleZabaras, N. „Solving Stochastic Inverse Problems: A Sparse Grid Collocation Approach“. In Large-Scale Inverse Problems and Quantification of Uncertainty, 291–319. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470685853.ch14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Inverse Uncertainty Quantification"
Friswell, Michael, Jose Fonseca, John Mottershead und Arthur Lees. „Quantification of Uncertainty Using Inverse Methods“. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1672.
Der volle Inhalt der QuelleHoupert, Corentin, Josselin Garnier und Philippe Humbert. „INVERSE PROBLEMS FOR STOCHASTIC NEUTRONICS“. In 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Research and Development for Computational Methods in Engineering Sciences (ICMES), 2021. http://dx.doi.org/10.7712/120221.8022.18997.
Der volle Inhalt der QuelleTsilifis, Panagiotis, Ilias Bilionis, Ioannis Katsounaros und Nicholas Zabaras. „VARIATIONAL REFORMULATION OF BAYESIAN INVERSE PROBLEMS“. In 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120215.4308.529.
Der volle Inhalt der Quellede Figueiredo, Leandro, Dario Grana, Leonardo Azevedo, Mauro Roisenberg und Bruno Rodrigues. „Uncertainty quantification in linear inverse problems with dimension reduction“. In International Congress of the Brazilian Geophysical Society&Expogef. Brazilian Geophysical Society, 2019. http://dx.doi.org/10.22564/16cisbgf2019.110.
Der volle Inhalt der QuelleSoize, C., C. Desceliers, J. Guilleminot, T. T. Le, M. T. Nguyen, G. Perrin, J. M. Allain, H. Gharbi, D. Duhamel und C. Funfschilling. „STOCHASTIC REPRESENTATIONS AND STATISTICAL INVERSE IDENTIFICATION FOR UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL MECHANICS“. In 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120215.4249.527.
Der volle Inhalt der QuelleBogaerts, Lars, Matthias Faes und David Moens. „A MACHINE LEARNING APPROACH FOR THE INVERSE QUANTIFICATION OF SET-THEORETICAL UNCERTAINTY“. In 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2019. http://dx.doi.org/10.7712/120219.6334.18848.
Der volle Inhalt der QuelleMackie, Randall L., Federico Miorelli und Max A. Meju. „Practical methods for model uncertainty quantification in electromagnetic inverse problems“. In SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018. http://dx.doi.org/10.1190/segam2018-2997269.1.
Der volle Inhalt der QuelleMackie, R., M. Meju und F. Miorelli. „Practical Methods For Model Uncertainty Quantification In Geophysical Inverse Problems“. In EAGE Conference on Reservoir Geoscience. European Association of Geoscientists & Engineers, 2018. http://dx.doi.org/10.3997/2214-4609.201803267.
Der volle Inhalt der QuellePerrin, G., und C. Soize. „STATISTICAL INVERSE PROBLEMS FOR NON-GAUSSIAN NON-STATIONARY STOCHASTIC PROCESSES DEFINED BY A SET OF REALIZATIONS“. In 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120215.4259.856.
Der volle Inhalt der QuelleRanjan, Reetesh, Shubham Karpe, Pavan Patel und Suresh Menon. „Assessment of Surrogate Models for Inverse Uncertainty Quantification of Simulant Combustion“. In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2137.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Inverse Uncertainty Quantification"
Fowler, Michael James. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1179471.
Der volle Inhalt der QuelleFavorite, Jeffrey A., Garrett James Dean, Keith C. Bledsoe, Matt Jessee, Dan Gabriel Cacuci, Ruixian Fang und Madalina Badea. Predictive Modeling, Inverse Problems, and Uncertainty Quantification with Application to Emergency Response. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1432629.
Der volle Inhalt der QuelleBiros, George. Uncertainity Quantification for Large Scale Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada578547.
Der volle Inhalt der Quelle