Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Invariant distribution of Markov processes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Invariant distribution of Markov processes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Invariant distribution of Markov processes"
Arnold, Barry C., und C. A. Robertson. „Autoregressive logistic processes“. Journal of Applied Probability 26, Nr. 3 (September 1989): 524–31. http://dx.doi.org/10.2307/3214410.
Der volle Inhalt der QuelleArnold, Barry C., und C. A. Robertson. „Autoregressive logistic processes“. Journal of Applied Probability 26, Nr. 03 (September 1989): 524–31. http://dx.doi.org/10.1017/s0021900200038122.
Der volle Inhalt der QuelleMcDonald, D. „An invariance principle for semi-Markov processes“. Advances in Applied Probability 17, Nr. 1 (März 1985): 100–126. http://dx.doi.org/10.2307/1427055.
Der volle Inhalt der QuelleMcDonald, D. „An invariance principle for semi-Markov processes“. Advances in Applied Probability 17, Nr. 01 (März 1985): 100–126. http://dx.doi.org/10.1017/s0001867800014683.
Der volle Inhalt der QuelleBarnsley, Michael F., und John H. Elton. „A new class of markov processes for image encoding“. Advances in Applied Probability 20, Nr. 1 (März 1988): 14–32. http://dx.doi.org/10.2307/1427268.
Der volle Inhalt der QuelleBarnsley, Michael F., und John H. Elton. „A new class of markov processes for image encoding“. Advances in Applied Probability 20, Nr. 01 (März 1988): 14–32. http://dx.doi.org/10.1017/s0001867800017924.
Der volle Inhalt der QuelleKalpazidou, S. „On Levy's theorem concerning positiveness of transition probabilities of Markov processes: the circuit processes case“. Journal of Applied Probability 30, Nr. 1 (März 1993): 28–39. http://dx.doi.org/10.2307/3214619.
Der volle Inhalt der QuelleKalpazidou, S. „On Levy's theorem concerning positiveness of transition probabilities of Markov processes: the circuit processes case“. Journal of Applied Probability 30, Nr. 01 (März 1993): 28–39. http://dx.doi.org/10.1017/s0021900200043977.
Der volle Inhalt der QuelleAvrachenkov, Konstantin, Alexey Piunovskiy und Yi Zhang. „Markov Processes with Restart“. Journal of Applied Probability 50, Nr. 4 (Dezember 2013): 960–68. http://dx.doi.org/10.1239/jap/1389370093.
Der volle Inhalt der QuelleAvrachenkov, Konstantin, Alexey Piunovskiy und Yi Zhang. „Markov Processes with Restart“. Journal of Applied Probability 50, Nr. 04 (Dezember 2013): 960–68. http://dx.doi.org/10.1017/s0021900200013735.
Der volle Inhalt der QuelleDissertationen zum Thema "Invariant distribution of Markov processes"
Hahn, Léo. „Interacting run-and-tumble particles as piecewise deterministic Markov processes : invariant distribution and convergence“. Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0084.
Der volle Inhalt der Quelle1. Simulating active and metastable systems with piecewise deterministic Markov processes (PDMPs): - Which dynamics to choose to efficiently simulate metastable states? - How to directly exploit the non-equilibrium nature of PDMPs to study the modeled physical systems? 2. Modeling active systems with PDMPs: - What conditions must a system meet to be modeled by a PDMP? - In which cases does the system have a stationary distribution? - How to calculate dynamic quantities (e.g., transition rates) in this framework? 3. Improving simulation techniques for equilibrium systems: - Can results obtained in the context of non-equilibrium systems be used to accelerate the simulation of equilibrium systems? - How to use topological information to adapt the dynamics in real-time?
Casse, Jérôme. „Automates cellulaires probabilistes et processus itérés ad libitum“. Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0248/document.
Der volle Inhalt der QuelleThe first part of this thesis is about probabilistic cellular automata (PCA) on the line and with two neighbors. For a given PCA, we look for the set of its invariant distributions. Due to reasons explained in detail in this thesis, it is nowadays unthinkable to get all of them and we concentrate our reections on the invariant Markovian distributions. We establish, first, an algebraic theorem that gives a necessary and sufficient condition for a PCA to have one or more invariant Markovian distributions when the alphabet E is finite. Then, we generalize this result to the case of a polish alphabet E once we have clarified the encountered topological difficulties. Finally, we calculate the 8-vertex model's correlation function for some parameters values using previous results.The second part of this thesis is about infinite iterations of stochastic processes. We establish the convergence of the finite dimensional distributions of the α-stable processes iterated n times, when n goes to infinite, according to parameter of stability and to drift r. Then, we describe the limit distributions. In the iterated Brownian motion case, we show that the limit distributions are linked with iterated functions system
陳冠全 und Koon-chuen Chen. „Invariant limiting shape distributions for some sequential rectangularmodels“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31238233.
Der volle Inhalt der QuelleChen, Koon-chuen. „Invariant limiting shape distributions for some sequential rectangular models /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20998934.
Der volle Inhalt der QuelleHammer, Matthias [Verfasser]. „Ergodicity and regularity of invariant measure for branching Markov processes with immigration / Matthias Hammer“. Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1029390975/34.
Der volle Inhalt der QuelleHurth, Tobias. „Invariant densities for dynamical systems with random switching“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52274.
Der volle Inhalt der QuelleKaijser, Thomas. „Convergence in distribution for filtering processes associated to Hidden Markov Models with densities“. Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92590.
Der volle Inhalt der QuelleTalwar, Gaurav. „HMM-based non-intrusive speech quality and implementation of Viterbi score distribution and hiddenness based measures to improve the performance of speech recognition“. Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1288654981&sid=7&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Der volle Inhalt der QuelleGreen, David Anthony. „Departure processes from MAP/PH/1 queues“. Title page, contents and abstract only, 1999. http://thesis.library.adelaide.edu.au/public/adt-SUA20020815.092144.
Der volle Inhalt der QuelleDrton, Mathias. „Maximum likelihood estimation in Gaussian AMP chain graph models and Gaussian ancestral graph models /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8952.
Der volle Inhalt der QuelleBücher zum Thema "Invariant distribution of Markov processes"
Hernández-Lerma, O. Markov Chains and Invariant Probabilities. Basel: Birkhäuser Basel, 2003.
Den vollen Inhalt der Quelle findenLiao, Ming. Invariant Markov Processes Under Lie Group Actions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6.
Der volle Inhalt der QuelleCarlsson, Niclas. Markov chains on metric spaces: Invariant measures and asymptotic behaviour. Åbo: Åbo Akademi University Press, 2005.
Den vollen Inhalt der Quelle findenBanjevic, Dragan. Recurrent relations for distribution of waiting time in Markov chain. [Toronto]: University of Toronto, Department of Statistics, 1994.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Measure-Valued Branching Markov Processes. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenOswaldo Luiz do Valle Costa. Continuous Average Control of Piecewise Deterministic Markov Processes. New York, NY: Springer New York, 2013.
Den vollen Inhalt der Quelle findenFeinberg, Eugene A. Handbook of Markov Decision Processes: Methods and Applications. Boston, MA: Springer US, 2002.
Den vollen Inhalt der Quelle findenUlrich, Rieder, und SpringerLink (Online service), Hrsg. Markov Decision Processes with Applications to Finance. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenTaira, Kazuaki. Semigroups, Boundary Value Problems and Markov Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Den vollen Inhalt der Quelle findenMilch, Paul R. FORECASTER, a Markovian model to analyze the distribution of Naval Officers. Monterey, Calif: Naval Postgraduate School, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Invariant distribution of Markov processes"
Liao, Ming. „Decomposition of Markov Processes“. In Invariant Markov Processes Under Lie Group Actions, 305–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_9.
Der volle Inhalt der QuellePollett, P. K. „Identifying Q-Processes with a Given Finite µ-Invariant Measure“. In Markov Processes and Controlled Markov Chains, 41–55. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_3.
Der volle Inhalt der QuelleDubins, Lester E., Ashok P. Maitra und William D. Sudderth. „Invariant Gambling Problems and Markov Decision Processes“. In International Series in Operations Research & Management Science, 409–28. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0805-2_13.
Der volle Inhalt der QuelleDudley, R. M. „A note on Lorentz-invariant Markov processes“. In Selected Works of R.M. Dudley, 109–15. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5821-1_8.
Der volle Inhalt der QuelleCocozza-Thivent, Christiane. „Hitting Time Distribution“. In Markov Renewal and Piecewise Deterministic Processes, 63–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70447-6_4.
Der volle Inhalt der QuelleLiao, Ming. „Lévy Processes in Lie Groups“. In Invariant Markov Processes Under Lie Group Actions, 35–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_2.
Der volle Inhalt der QuelleLiao, Ming. „Lévy Processes in Homogeneous Spaces“. In Invariant Markov Processes Under Lie Group Actions, 73–101. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_3.
Der volle Inhalt der QuelleRong, Wu. „Some Properties of Invariant Functions of Markov Processes“. In Seminar on Stochastic Processes, 1988, 239–44. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4612-3698-6_16.
Der volle Inhalt der QuelleLiao, Ming. „Lévy Processes in Compact Lie Groups“. In Invariant Markov Processes Under Lie Group Actions, 103–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_4.
Der volle Inhalt der QuelleLiao, Ming. „Inhomogeneous Lévy Processes in Lie Groups“. In Invariant Markov Processes Under Lie Group Actions, 169–237. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Invariant distribution of Markov processes"
Rajendiran, Shenbageshwaran, Francisco Galdos, Carissa Anne Lee, Sidra Xu, Justin Harvell, Shireen Singh, Sean M. Wu, Elizabeth A. Lipke und Selen Cremaschi. „Modeling hiPSC-to-Early Cardiomyocyte Differentiation Process using Microsimulation and Markov Chain Models“. In Foundations of Computer-Aided Process Design, 344–50. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.152564.
Der volle Inhalt der QuelleAkshay, S., Blaise Genest und Nikhil Vyas. „Distribution-based objectives for Markov Decision Processes“. In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3209108.3209185.
Der volle Inhalt der QuelleBudgett, Stephanie, Azam Asanjarani und Heti Afimeimounga. „Visualizing Markov Processes“. In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t10f3.
Der volle Inhalt der QuelleFracasso, Paulo Thiago, Frank Stephenson Barnes und Anna Helena Reali Costa. „Energy cost optimization in water distribution systems using Markov Decision Processes“. In 2013 International Green Computing Conference (IGCC). IEEE, 2013. http://dx.doi.org/10.1109/igcc.2013.6604516.
Der volle Inhalt der QuelleIsmail, Muhammad Ali. „Multi-core processor based parallel implementation for finding distribution vectors in Markov processes“. In 2013 18th International Conference on Digital Signal Processing (DSP). IEEE, 2013. http://dx.doi.org/10.1109/siecpc.2013.6550997.
Der volle Inhalt der QuelleTsukamoto, Hiroki, Song Bian und Takashi Sato. „Statistical Device Modeling with Arbitrary Model-Parameter Distribution via Markov Chain Monte Carlo“. In 2021 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2021. http://dx.doi.org/10.1109/sispad54002.2021.9592558.
Der volle Inhalt der QuelleLee, Seungchul, Lin Li und Jun Ni. „Modeling of Degradation Processes to Obtain an Optimal Solution for Maintenance and Performance“. In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84166.
Der volle Inhalt der QuelleSathe, Sumedh, Chinmay Samak, Tanmay Samak, Ajinkya Joglekar, Shyam Ranganathan und Venkat N. Krovi. „Data Driven Vehicle Dynamics System Identification Using Gaussian Processes“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2022.
Der volle Inhalt der QuelleVelasquez, Alvaro. „Steady-State Policy Synthesis for Verifiable Control“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/784.
Der volle Inhalt der QuelleHaschka, Markus, und Volker Krebs. „A Direct Approximation of Cole-Cole-Systems for Time-Domain Analysis“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84579.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Invariant distribution of Markov processes"
Stettner, Lukasz. On the Existence and Uniqueness of Invariant Measure for Continuous Time Markov Processes,. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada174758.
Der volle Inhalt der Quelle