Dissertationen zum Thema „Intestinal brain microbiota axis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-41 Dissertationen für die Forschung zum Thema "Intestinal brain microbiota axis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Sundman, Mark H., Nan-kuei Chen, Vignesh Subbian und Ying-hui Chou. „The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease“. ACADEMIC PRESS INC ELSEVIER SCIENCE, 2017. http://hdl.handle.net/10150/626124.
Der volle Inhalt der QuelleRincel, Marion. „Role of the gut-brain axis in early stress-induced emotional vulnerability“. Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0870/document.
Der volle Inhalt der QuelleEarly-life adversity is a main risk factor for psychiatric disorders at adulthood; however the mechanisms underlying the programming effect of stress during development are still unknown. In rodents, chronic maternal separation has long lasting effects in adult offspring, including hyper-anxiety and hyper-responsiveness to a novel stress, along with gastrointestinal dysfunctions. Moreover, recent studies report gut barrier hyper-permeability in rat pups submitted to maternal separation, an effect that could potentially lead to dysbiosis and altered gut-brain communication. Therefore, the aim of my PhD was to unravel the role of the gut-brain axis in the neurobehavioral effects of early-life stress. We recently reported that some neural, behavioral and endocrine alterations associated with maternal separation in rats could be prevented by maternal exposure to a high-fat diet. We first addressed the effects of maternal high-fat diet on brain and gut during development in the maternal separation model. We show that maternal high-fat diet prevents the stress-induced decrease in spine density and altered dendritic morphology in the medial prefrontal cortex. Moreover, maternal high-fat diet also attenuates the exacerbated intestinal permeability associated with maternal separation. To explore a potential causal impact of gut leakiness on brain functions, we then examined the impact of pharmacological and genetic manipulations of intestinal permeability on brain and behavior. We report 1) that restoration of gut barrier function attenuates some of the behavioral alterations associated with maternal separation and 2) that chronic gut leakiness in naive adult transgenic mice recapitulates the effects of maternal separation. Finally, we examined the effects of multifactorial early-life adversity on behavior, gut function and microbiota composition in males and females using a combination of prenatal inflammation and maternal separation in mice. At adulthood, offspring exposed to early adversity displayed sex-specific behavioral (social behavior deficits in males and increased anxiety in females) and intestinal phenotypes. In conclusion, our work demonstrates an impact of gut dysfunctions, in particular gut leakiness, on the emergence of emotional alterations. Further studies are needed to unravel the role of the gut dysbiosis in the expression of the behavioral phenotypes associated with early-life adversity
Marsilio, Ilaria. „Functional and Molecular Studies of the Crosstalk between Intestinal Microbioma and Enteric Nervous System and Potential Effects on the Gut-Brain Axis“. Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3427312.
Der volle Inhalt der QuelleCharton, Elise. „Lait humain vs. préparation pour nourrissons : digestibilité des protéines et impact sur l’axe microbiote-intestin-cerveau“. Electronic Thesis or Diss., Rennes, Agrocampus Ouest, 2023. http://www.theses.fr/2023NSARB368.
Der volle Inhalt der QuelleNowadays, a high rate of infants is still being fed infant formulas (IF) based on cow milk and subjected to several technological treatments. These substitutes aim to mimic as close as possible the human milk (HM). Despite of IF improvement, differences still exist between HM and IF in terms of composition and structure, and effects on health in infancy, and later on in adulthood. The objective of this work was to understand how the infant food modulated the dietary nitrogen digestibility and, in overall, how it shaped the microbiota-gut-brain axis. Two infant models were used and compared, the 16 to 21-day-old mini-piglet Yucatan and an in vitro dynamic digestion model parametered with term infant digestive conditions. Digestive contents and tissues were then analyzed using metagenomic (microbiota), histological and ex vivo permeability (intestinal physiology) approaches, gene expression and targeted-metabolomic approaches (intestine, brain and plasma). The results showed that the digestibility of nitrogen and at least extent, that of a few amino acids (Lys, Phe, Thr, Val, Ala, Pro and Ser) were different between HM and IF. The two digestion models (in vivo and in vitro) led to similar observations in terms of meal deconstruction and proteolysis, showing that the in vitro dynamic digestion model is a good proxy of the in vivo digestion regarding digestion kinetics. The microbiota-gut-brain axis, notably regarding the colonic microbial composition and the tryptophan metabolism, which digestibility was similar between infant foods, were differently modulated by HM and IF. The increase of the intestinal permeability, though moderately, was associated with a boost of the intestinal immune system and changes in gene expression (barrier and endocrine functions, volatile fatty acids receptors) at hypothalamic and striatal levels and with changes in hippocampal and plasma metabolomic profiles. Some components present in HM (e.g.: oligosaccharides, non-protein nitrogen such as urea, bacteria consortia) and absent in IF can explain the discrepancies observed. IF-supplementation with these bioactive components and/or with the modulation of the protein profile would be of interest for further investigation
De, Vadder Filipe. „Détection portale des nutriments et contrôle de l'homéostasie énergétique par l'axe nerveux intestin-cerveau“. Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01058661.
Der volle Inhalt der QuelleStrati, Francesco. „The microbiota-gut-brain axis: characterization of the gut microbiota in neurological disorders“. Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/368893.
Der volle Inhalt der QuelleStrati, Francesco. „The microbiota-gut-brain axis: characterization of the gut microbiota in neurological disorders“. Doctoral thesis, Università degli studi di Trento, 2017. http://hdl.handle.net/10449/38243.
Der volle Inhalt der QuelleStrati, Francesco. „The microbiota-gut-brain axis: characterization of the gut microbiota in neurological disorders“. Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/1917/1/STRATI_PhD_thesis_R1_2017.01.13.pdf.
Der volle Inhalt der QuelleAltera, Annalisa. „Gut-brain axis: the role of microbiota in gut and brain ageing“. Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1209555.
Der volle Inhalt der QuelleGorard, David A. „Intestinal motor function and the brain-gut axis in irritable bowel syndrome“. Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395770.
Der volle Inhalt der QuelleLowe, Patrick P. „Inebriated Immunity: Alcohol Affects Innate Immune Signaling in the Gut-Liver-Brain Axis“. eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/987.
Der volle Inhalt der QuelleAndersson, Jonas. „Is there a Connection Between the Gut-Microbiota and Major Depression?“ Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19150.
Der volle Inhalt der QuelleMurray, Emma. „Immune Challenge During Puberty: Role of the Gut Microbiota and Neurobehavioural Outcomes“. Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40467.
Der volle Inhalt der QuellePALADINO, Letizia. „THE GUT-BRAIN AXIS: EFFECTS OF THE PROBIOTIC LACTOBACILLUS FERMENTUM INTRODUCED IN THE DIET OF ETHANOL-FED MICE“. Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/563684.
Der volle Inhalt der QuelleHoffman, Jared D. „THE PREBIOTIC INULIN BENEFICIALLY MODULATES THE GUT-BRAIN AXIS BY ENHANCING METABOLISM IN AN APOE4 MOUSE MODEL“. UKnowledge, 2018. https://uknowledge.uky.edu/pharmacol_etds/24.
Der volle Inhalt der QuelleNilsson, Malin. „Effects of the Mediterranean Diet on Brain Function : Underlying mechanisms“. Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17531.
Der volle Inhalt der QuelleLebovitz, Yeonwoo. „Modulation of Neurodevelopmental Outcomes using Lactobacillus in a Model of Maternal Microbiome Dysbiosis“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94328.
Der volle Inhalt der QuellePh. D.
Population studies on neurodevelopmental disorders, such as autism spectrum disorders, schizophrenia, and attention deficit hyperactivity disorder, highlight antibiotic use during pregnancy as a major correlate of subsequent diagnoses in children. These findings support a growing body of evidence from animal and human studies that the microbial ecosystems (“microbiome”) found in and on our bodies play significant roles in mental health, including mood, cognition, and brain function. Importantly, antibiotics during pregnancy create an imbalance of the gut microbiome (“dysbiosis”) and disrupt the microbial inoculum transferred from mother to child, which is critical for maturation of the infant immune system and holds implications for long-term health outcomes. Thus, the research objective of this dissertation is to identify a mechanism of influence from the mother’s gut to the neonate’s brain by examining the brain’s resident immune cells (“microglia”) in a mouse model of antibiotics-driven maternal microbiome dysbiosis (MMD). We uncover autism-like behavioral deficits and dysfunctional microglia in MMD offspring, and characterize signaling cues specific to microglia by which improper neurodevelopment may be taking place. We also reveal that the detrimental effects of MMD are reversed in mice born to mothers pretreated with a probiotic candidate, Lactobacillus murinus HU-1, to suggest maternally-derived Lactobacillus may help to mediate proper neurodevelopment.
Lauffer, Adriana. „Efeito do estresse agudo, crônico e ambos combinados na permeabilidade intestinal de ratos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/143409.
Der volle Inhalt der QuelleBackground: Psychological stress increases intestinal permeability in rodents and humans, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders through disturbances in brain-gut axis. However, the effect of acute stress on the background of Crhonic life stress, potentially better approaching the human situation, is unknown. Moreover, only limited information is available on the effects in small intestine versus colon in animal model. Methods: Wistar rats were allocated to 4 stress protocols: 1/ sham; 2/ acute stress (isolation and limited movement); 3/ Crhonic crowding stress and 4/ acute + Crhonic stress (n = 8 per group). Jejunum and colon were harvested to study permeability in Ussing chambers, gene expression of tight junction molecules and mast cell density. Plasma corticosterone levels were measured. Key Results: Plasma corticosterone was elevated in all three stress conditions, with the highest levels in the combined stress condition. Permeability of the jejunum was increased in all stress conditions and correlated with corticosterone levels. Increased expression of claudin 1, 5 and 8, occludin and ZO-1 was detected in the acute stress condition in the jejunum. In contrast, colonic permeability was increased in the acute on Crhonic stress protocol only and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the Crhonic and acute on Crhonic stress condition in the colon only. Conclusion and Inferences: Acute, Crhonic and combined stress differentially affect intestinal permeability, expression of tight junction molecules and mast cells in the jejunum and the colon. These findings provide further insight in the mechanisms of stress-related intestinal hyperpermeability and barrier.
Jaglin, Mathilde. „Axe intestin-cerveau : effets de la production d’indole par le microbiote intestinal sur le système nerveux central“. Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112312/document.
Der volle Inhalt der QuelleThe gastro-intestinal tract hosts a complex microbial community, the gut microbiota, whose collective genome coding capacity vastly exceeds that of the host genome. The involvement of the gut microbiota in various aspects of the host physiology, such as the nutritional metabolism and the immunity, has long been studied. In contrast, the possible action of the gut microbiota on brain development and functioning is a new line of research, still poorly explored. In this context, we performed a first general study of the effect of gut microbiota on the brain by comparing the sensory-motor functions, the anxiety-like behaviour, the activation of the hypothalamic-pituitary-adrenal axis and the brain monoamine profile in germ-free and conventional F344 rats. The results show that, in this particularly stress-sensitive strain, absence of gut microbiota exacerbates the anxiety-like behaviour and neuroendocrine response to stress, and reduces brain dopamine metabolism. To investigate the means by which the microbiota can affect the brain, a second study was conducted, targeting a specific bacterial metabolite, indole, whose oxidative derivatives, produced by the liver, are known to have neuroactive properties. Indole is a natural metabolite of the gut microbiota, whoseoverproduction could occur during a microbiota dysbiosis. Two conditions of overproduction, namely chronic and acute, were modelled. In both cases, significant changes in the behaviour of the host were observed. In chronic overproduction, indole promotes anxiety- and depressive-like behaviours, while acute overproduction has a marked sedative effect. From a mechanistic point of view, we confirm that indole can act on the central nervous system through its oxidized derivatives and show for the first time that it can also act by activating the brain nuclei of the vagus nerve
Eckered, Göransson Sara. „Kan probiotika lindra depression?“ Thesis, Linnéuniversitetet, Institutionen för kemi och biomedicin (KOB), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-84831.
Der volle Inhalt der QuellePrevious research has shown a connection between our microbiota and physical health, and today a lot of research is also being done on whether it also can affect our mental health. Today, over four percent of the world's population suffers from depression, and this literature study has, by analysing seven studies and their results, attempted to answer the question of whether probiotics can alleviate depression. Either as primary treatment or as a supplement to other treatment. This literature study did not provide any definite answers to that question, other than that all the researchers involved in the studies analysed agree that more, longer and larger studies are needed before one can draw any conclusions.
Roque, Ana Filipa Silva. „Internship Reports and Monograph entitled "The Influence of Gut Microbiota in the Development of Schizophrenia"“. Master's thesis, 2020. http://hdl.handle.net/10316/93120.
Der volle Inhalt der QuelleO microbiota intestinal humano é constituído por um vasto número de microrganismos,maioritariamente bactérias, que se co-desenvolveram com o seu hospedeiro humano.Recentemente, neurocientistas começaram a apreciar a influência da interação dinâmica entreos micróbios intestinais e os sistemas gastrointestinal e nervoso do seu hospedeiro,atualmente conhecido por eixo microbiota-intestino-cérebro. Esta comunicação bidirecionalenvolve vias imunológicas, neuronais, endócrinas e metabólicas. Evidências de estudosrealizados nos últimos anos sugerem que o microbiota pode estar associado a doençasneuropsiquiátricas, em particular a esquizofrenia.Esta monografia resume e discute as informações atualmente disponíveis sobre ainfluência do ambiente gastrointestinal no sistema nervoso central, com foco no eixomicrobiota-intestino-cérebro, os mecanismos subjacentes à comunicação bidirecional entre omicrobiota intestinal e o cérebro, o impacto que o eixo microbiota-intestino-cérebro podeter na esquizofrenia e novas estratégias terapêuticas, de modo a estabelecer perspetivas parao futuro. Com efeito, estudos recentes relataram que distúrbios neuropsiquiátricos, como aesquizofrenia estão associados a alterações do microbiota intestinal, um fenómeno conhecidopor disbiose. Alterações no microbiota intestinal induzem a ativação anormal das principaisvias de comunicação do eixo microbiota-intestino-cérebro através de mecanismosimunológicos, neurais, endócrinos, metabólicos e epigenéticos, levando a uma inflamaçãoexacerbada da mucosa intestinal e a alterações nas respostas ao stress.Em jeito de conclusão, o eixo microbiota-intestino-cérebro emerge agora como umanova estratégia terapêutica para prevenção e tratamento de distúrbios neuropsiquiátricos,incluindo a esquizofrenia. No entanto, mais estudos são necessários para que a visãotradicional da etiologia das doenças neuropsiquiátricas seja alterada, revelando o papel real doeixo microbiota-intestino-cérebro e o seu potencial como alvo de novos tratamentos.
The human gut microbiota (GM) comprise a large number of microorganisms, mostlybacteria, which co-evolved together with their human host. Recently, neuroscientist began toappreciate the influence of the dynamic interaction between gut microbes and hostgastrointestinal and central nervous system, the now known microbiota-gut-brain (MGB) axis.This bidirectional communication involves immune, neural, endocrine and metabolic pathways.Recent evidences suggest that microbiota may be associated with the pathogeny ofneuropsychiatric diseases, in particular schizophrenia (SCZ).This document summarizes and discusses currently available information on theinteraction between the gastrointestinal and central nervous system, focusing on the MGBaxis, the mechanisms underlying the bidirectional communication between the GM and thebrain, the impact that MGB axis may have in SCZ and novel therapeutic strategies, to establishfuture perspectives. Indeed, recent studies reported that neuropsychiatric disorders, such asSCZ, are associated with changes in the GM, a phenomenon known as dysbiosis. Alterationsin the GM induce aberrant activation of key pathways of MGB axis communication, includingimmune, neural, endocrine, metabolic and epigenetic mechanisms, leading to exacerbatedintestinal mucosal inflammation and altered responses to stress.The MGB axis may provide a novel therapeutic strategy for the prevention andtreatment of neuropsychiatric disorders, including SCZ. However, further research is requiredto change the traditional view of neuropsychiatric diseases, revealing the feasibility andpotential of the of MGB axis as a target for novel treatment.
Centeio, Rita Correia. „Relatórios de Estágio e Monografia intitulada "Papel da Microbiota Intestinal nas Perturbações do Espetro do Autismo"“. Master's thesis, 2021. http://hdl.handle.net/10316/99120.
Der volle Inhalt der QuelleAs Perturbações do Espetro do Autismo englobam um conjunto de distúrbios do neurodesenvolvimento. A fisiopatologia desta doença é muitas vezes idiopática, podendo ocorrer devido a predisposição genética, fatores ambientais, ou ainda, resultar da interação dos dois. Tem como consequência défices na comunicação e interação social, comportamentos anormais, estereotipados e repetitivos e, com grande prevalência, sintomas gastrointestinais. Está comprovado que a microbiota intestinal tem impacto em inúmeras funções imunológicas, metabólicas e neuronais, através da comunicação bidirecional entre o cérebro e o intestino, denominada eixo intestino-cérebro. Vários estudos demonstram que o intestino tem a capacidade de influenciar o desenvolvimento do cérebro. Assim, surgiu a hipótese de que a disbiose intestinal pudesse estar implicada na fisiopatologia desta doença. A composição alterada da microbiota pode modular as vias de interação entre a microbiota e o sistema nervoso central, o que vai originando consequências a nível comportamental e cognitivo, e por sua vez originando diferentes fenótipos da doença. Simultaneamente, terapêuticas que têm como objetivo restabelecer o equilíbrio da microbiota apresentam efeitos benéficos na diminuição da severidade e correção dos comportamentos destes doentes. Neste documento é feita uma análise à alteração das vias de comunicação do eixo intestino-cérebro, qual a influência que a disbiose exerce nas mesmas, e como é que a modulação do intestino pode ser benéfica para o doente com perturbação do espetro do autismo.
Autism Spectrum Disorders encompass a set of neurodevelopmental disorders. The pathophysiology of this disease is often idiopathic and may occur due to genetic predisposition, environmental factors, or even result from the interaction of both. It results in deficits in communication and social interaction, abnormal, stereotyped, repetitive behaviors and interests, and, with great prevalence, gastrointestinal symptoms, like constipation and flatulence. It has been proven that the gut microbiota has an impact on numerous immune, metabolic and neuronal functions, through bidirectional communication between the brain and the intestine, called gut-brain axis. Several studies show that the intestine has the capacity to influence brain development. Thus, the hypothesis emerged that intestinal dysbiosis could be involved in the pathophysiology of this disease. The altered composition of the microbiota may modulate the interaction pathways between the microbiota and the central nervous system, leading to behavioral and cognitive consequences, and in turn different disease phenotypes. Simultaneously, therapies that aim to restore the balance of the microbiota have beneficial effects in reducing the severity and correcting the behavior of these patients. In this document, an analysis is made of the alteration of the communication pathways of the gut-brain axis, the influence that dysbiosis exerts on them, and how the modulation of the intestine can be beneficial to the patient with autism spectrum disorder.
Soares, Raquel Araújo. „Influência da Microbiota Intestinal nas Perturbações do Espetro do Autismo“. Master's thesis, 2017. http://hdl.handle.net/10316/83643.
Der volle Inhalt der QuelleA microbiota intestinal é o conjunto dos microrganismos que existem no intestino humano, constituída maioritariamente por bactérias, mas também por fungos, vírus eprotozoários. O eixo microbiota-intestino-cérebro refere-se às interações entre o sistema nervoso central, o sistema gastrointestinal e os microrganismos que vivem no trato gastrointestinal, interações estas que se realizam via neural, endócrina, imunológica e metabólica. Alterações neste eixo, designadas de disbiose, podem provocar problemas de crescimento e desenvolvimento, incluindo o desenvolvimento do sistema nervoso central, os quais estão associados à etiologia de várias doenças, nomeadamente, as designadas por Perturbações do Espetro do Autismo. Problemas gastrointestinais estão intimamente relacionados com esta doença etratamentos com probióticos, antibióticos e alterações na dieta estão a ser estudados paraalívio destes sintomas.
The intestinal microbiota is the set of microorganisms that exist in the human intestine,consisting mainly of bacteria, but also by fungi,viruses and protozoa. The microbiota-intestine-brain axis refers to the interactions between the central nervous system, the gastrointestinal system and the microorganisms that live in thegastrointestinal tract. These interactions are carried out via neural,endocrine, immunological and metabolic. Changes in this axis, called dysbiosis,can lead to problems of growth and development, including the development of thecentral nervous system, which are associated with the etiology of various diseases,namely Autism Spectrum Disorders.Gastrointestinal problems are closely related tothis disease and treatments with probiotics,antibiotics and changes in diet arebeing studied to relieve these symptoms.
Queiroz, João Pedro Nunes. „O microbiota e o ser humano“. Master's thesis, 2017. http://hdl.handle.net/10316/83633.
Der volle Inhalt der QuelleO ser humano coexiste com as mais diversas espécies bacterianas. Esta coexistência dá-se devido aos benefícios mútuos existentes para ambos, a espécie humana fornecendo nutrientes necessários à sobrevivência das espécies bacterianas e estas contribuindo para o nosso desenvolvimento, nomeadamente auxiliando no desenvolvimento do SNC e do Sistema imunitário. Estas espécies que colonizam o intestino, a pele e diversas mucosas como a nasal, bocal, vaginal e pulmonar constituem o microbiota que é, portanto, o conjunto das espécies associadas a uma determinada região. O conjunto das interações entre o microbiota e o seu habitat denomina-se microbioma.Neste trabalho irei abordar vários tipos de microbiota existentes no corpo humano dando especial ênfase ao microbiota intestinal e a modulação deste. O microbiota intestinal é composto por diversos microrganismos incluindo bactérias, fungos, protozoários e vírus. Estima-se que cada indivíduo contenha mais de 100 espécies diferentes no seu trato gastrointestinal e que estas sejam compostas por um total de 10!" − 10!" células, o que representa um número cerca de dez vezes maior que o representado pelas células eucariotas. Também será abordado os efeitos que fatores externos como probióticos, prebióticos, antibióticos e fatores internos como o Brain Gut Axis, sistema imunitário e nervoso têm neste. Por fim irei referir o potencial impacto clinico que o microbiota e o desequilíbrio deste (disbiose) poderão ter na doença de Parkinson, na malária e um novo método clínico de diagnóstico, que procura padronizar o microbiota e a partir disso traçar o perfil dele, permitindo facilmente identificar períodos de disbiose. Isto por sua vez é um passo na criação de uma infraestrutura necessária para no futuro poder utilizar o microbiota como uma estratégia de diagnóstico, para a monitorização de regimes terapêuticos prescritos e para a melhoria de novas aproximações terapêuticas.
The human being coexists with the most diverse bacterial species. This coexistence is due to the mutual benefits existing for both. The human species provides nutrients necessary for the survival of bacterial species and these contribute to our development, assisting in the development of the CNS and the immune system. These species that colonize the intestine, the skin and various mucosae such as nasal, mouth, vaginal and pulmonary establish the microbiota, which is the group of species associated to a certain region. The set of interactions between the microbiota and its habitat is called microbiome.In this work, I will address several types of microbiota in the human body with special emphasis on the intestinal microbiota and its modulation. The intestinal microbiota is composed of several microorganisms including bacteria, fungi, protozoa and viruses. It is estimated that each individual contains more than 100 different species in their gastrointestinal tract and that these are composed by a total of 10!" − 10!" cells, representing a number ten times greater than the one represented by eukaryotic cells. We will also address the effects that external factors such as probiotics, prebiotics, antibiotics and internal factors such as the Brain Gut Axis, immune and nervous system have in the microbiota. Finally, I will mention the potential clinical impact that the microbiota and its imbalance (dysbiosis) may have on Parkinson's disease, malaria and a new clinical diagnostic method, which seeks to standardize the microbiota and from there to outline its profile, allowing to easily identify periods of dysbiosis. This is a necessary step in creating an essential infrastructure for the future use of the microbiota as a diagnostic strategy, for the monitoring of prescribed therapeutic regimens and for the improvement of new therapeutic approaches.
Sacramento, Maria João de Sousa. „Relatórios de Estágio e Monografia intitulada “A Influência da Microbiota Intestinal nas Doenças Neurodegenerativas”“. Master's thesis, 2020. http://hdl.handle.net/10316/93008.
Der volle Inhalt der QuelleThe gastrointestinal tract harbours a complex and dynamic community of microorganisms, collectively called the gut microbiota. The gut microbiota coexists on a symbiotic relationship with the human host and is responsible for a wide range of physiological functions that ensure individual health and homeostasis.The gut microbiota is a living ecosystem whose composition may be perturbed, resulting in a misplaced and eventually pathogenic profile, known as dysbiosis. This dysregulation is associated with the development and progression of many diseases, including neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease.In the last few years, several mechanisms have been proposed to explain the implications of the gut microbiota in the central nervous system. The microbiota-gut-brain axis is a bidirectional system between the central nervous system and the gastrointestinal tract. This communication system is mainly composed by four dynamic communication pathways: nervous, endocrine, immune and metabolic.Based on this interaction some alternative therapeutics with potential impact on the prevention of neurodegenerative diseases have been proposed, including probiotics, prebiotics, symbiotics, antibiotics, diet and fecal microbiota transplantation.The main purpose of this dissertation is to debate the role of the intestinal microbiota as a possible conditioning factor in the pathophysiology of neurodegenerative diseases, in particular Alzheimer’s and Parkinson’s diseases.
O trato gastrointestinal alberga uma complexa e dinâmica comunidade de microorganismos, denominada por microbiota intestinal. A microbiota intestinal coexiste numa relação simbiótica com o hospedeiro humano e é responsável por exercer uma série de funções essenciais para a saúde e homeostase do indivíduo.A microbiota intestinal é um ecossistema vivo capaz de sofrer perturbações na sua composição, o que poderá resultar num perfil desajustado e eventualmente patogénico, designado por disbiose. Esta desregulação da microbiota intestinal contribui para o desenvolvimento e progressão de diversas doenças, nomeadamente doenças neurodegenerativas, das quais se destacam a doença de Alzheimer e a doença de Parkinson. Nos últimos anos, têm sido propostos vários mecanismos com o intuito de explicar as implicações que a microbiota intestinal pode ter no sistema nervoso central. Surge assim, o conceito do eixo microbiota-intestino-cérebro, que é um sistema de comunicação bidirecional entre o sistema nervoso central e o trato gastrointestinal. A comunicação entre a microbiota, o intestino e o cérebro é assegurada por quatro vias de comunicação dinâmicas, as vias neuronal, endócrina, imunológica e metabólica. Com base nesta interação, têm sido propostas alternativas terapêuticas com potencial impacto na prevenção das doenças neurodegenerativas, nomeadamente probióticos, prebióticos, simbióticos, antibióticos, dieta e transplante de microbiota fecal.O principal objetivo desta monografia é discutir o papel da microbiota intestinal como um possível fator condicionante na fisiopatologia das doenças neurodegenerativas, em particular nas doenças de Alzheimer e de Parkinson.
Martins, André Magno de Sá Vieira. „Transplante fecal, o seu impacto na microbiota intestinal e opções terapêuticas associadas“. Master's thesis, 2020. http://hdl.handle.net/10316/97751.
Der volle Inhalt der QuelleA microbiota intestinal tem sido uma das temáticas mais intensamente exploradas pela comunidade científica, nas últimas duas décadas. O termo “microbiota intestinal” refere-se a uma vasta comunidade composta por milhões de microorganismos, essencialmente bactérias, que se relacionam entre si, com o organismo hospedeiro e com o meio externo.No decorrer dos últimos anos, foram vários os estudos que atribuíram à microbiota intestinal funções integrantes da modulação do sistema imunitário, génese de estados pró-inflamatórios e produção de diversas proteínas, entre as quais algumas com função neuromoduladora. Consequentemente, verificou-se um crescente interesse no conhecimento do seu papel em várias patologias gastointestinais, metabólicas, neuropsiquiátricas e autoimunes. Define-se transplante de microbiota intestinal como a transferência de material fecal de um sujeito dador, aparentemente saudável, para um sujeito recetor com um desequilíbrio manifesto na sua comunidade microbiótica intestinal. Potencialmente, em tese, este último beneficiará que o seu aparelho gastrointestinal seja colonizado pela microbiota do dador. Atualmente este procedimento já está aprovado para o tratamento da infeção por C. difficile recorrente ou refratária à terapêutica standard, mas prevê-se que o seu espectro de ação possa ser ampliado para diversas outras patologias. Este artigo de revisão aborda o conceito de transplante de microbiota fecal, a sua forma de administração, efeitos adversos associados e potenciais doenças que possam beneficiar desta modalidade terapêutica. É ainda dado enfoque à fisiopatologia e aos mecanismos através dos quais este inovador procedimento pode ser benéfico.
In the last two decades, intestinal microbiota has been one of the most discussed issues by the scientific community. The term ”intestinal microbiota” refers to a vast community structure made up by millions of microorganisms, mostly bacteria, which interact with each other, with the host, and with the external environment as well. Over the last few years, several studies have associated intestinal microbiota with immune system modulation, generation of proinflammatory states and in the production of several proteins, including neuromodulators. Therefore, it has been an increasing interest to find out its role in gastrointestinal, metabolic, neuropsychiatric and autoimmune disorders. Faecal Microbiota Transplantation is the process of transferring faecal bacteria from a healthy individual into another individual who suffers from intestinal microbiota disorders. On paper, the latter will benefit from the transplant of the donor’s intestinal microbiota. Nowadays, this procedure is approved for the treatment of recurrent C. difficile or when standard treatment fails, but its action spectrum is expected to be expanded to other pathologies.This review addresses the concept of faecal microbiota transplantation, its therapeutical procedure, its adverse effects and the potential diseases whose treatment can benefit from the performance of this medical method. Moreover, it also focuses on physiopathology and the mechanisms through which this novel procedure can have a positive outcome.
Ribeiro, Ricardo Manuel Esteves. „Innovative pathways underlying the etiology and the therapeutics via modulation of the gut microbiota“. Master's thesis, 2018. http://hdl.handle.net/10316/84748.
Der volle Inhalt der QuelleUma vez que não existe cura definitiva para doença de Parkinson, a busca de alternativas terapêuticas e outros alvos terapêuticos sobressai como uma necessidade urgente na sociedade moderna.Estudos recentes, evidenciam uma íntima e complexa via de comunicação bidirecional entre o cérebro e o trato gastro-intestinal envolvendo o microbiota: o eixo cérebro-intestino-microbiota. Esta rede de comunicação entre o cérebro e o intestino pode ser o fator determinante na progressão de doenças neurodegenerativas, nomeadamente a doença de Parkinson. Tem sido demonstrado em vários trabalhos que alterações no microbiota intestinal desencadeia uma série de mecanismos celulares que levam a um processo inflamatório exagerado que, por sua vez, debilita a integridade do epitélio intestinal. Este desequilíbrio na permeabilidade do epitélio intestinal exacerba a resposta inflamatória a qual se propaga para o sistema nervoso entérico, contribuindo para a formação de agregados de α-sinucleína. Dada a ligação entre o sistema nervoso entérico e o sistema nervoso central, através do nervo vago, a inflamação e os agregados de α-sinucleína propagam-se até ao sistema nervoso central, onde ocorre deposição de agregados de α-sinucleína nos neurónios da substantia nigra. Contudo terapias alternativas à base de precursores de compostos fosfolipídicos, probióticos, prébióticos e simbióticos relavam um efeito neuroprotetor e anti-inflamatório, podendo assim representar uma nova abordagem a terapêutica da doença de Parkinson. Neste trabalho discute-se criticamente estas novas vias subjacentes à etiologia e à intervenção terapêutica na doença de Parkinson.
Since there is no definitive cure for Parkinson's disease, the search for therapeutic alternatives and other therapeutic targets stands out as an urgent need in modern society.Recent studies show an intimate and complex bi-directional communication pathway between the brain and the gut involving the microbiota: the microbiota-gut-brain axis. This communication network may be the determining factor in the progression of certain neurodegenerative diseases, namely Parkinson's disease. It has been shown by several studies that changes in the intestinal microbiota triggers a series of cellular mechanisms that lead to an exaggerated inflammatory process that weakens the integrity of the intestinal epithelium. This imbalance in the permeability of the intestinal epithelium exacerbates the inflammatory response which spreads to the enteric nervous system, contributing to the formation of α-synuclein aggregates. Due to the connection between the enteric nervous system and the central nervous system through the vagus nerve, inflammation and α-synuclein aggregates spread to the central nervous system, where occurs deposition of α-synuclein in the neurons of the substantia nigra. However, alternative therapies based on phospholipidic membrane precursors, probiotics, prebiotics and synbiotics relied on a neuroprotective and anti-inflammatory effect and could therefore represent a new approach to the treatment of Parkinson's disease. Here we critically address these novel and innovative pathways underlying both PD etiology and therapeutic intervention.
Dias, Inês Marques de Matos. „"Impacto do Consumo de Alimentos Ricos em Polifenóis no Eixo Intestino-Cérebro na Doença de Parkinson"“. Master's thesis, 2018. http://hdl.handle.net/10316/84405.
Der volle Inhalt der QuelleA Doença de Parkinson (DP) é uma das doenças neurodegenerativas mais comuns, caracterizada pela perda de neurónios dopaminérgicos. É geralmente diagnosticada já numa fase avançada da doença, onde os doentes apresentam sintomas motores que diminuem significativamente a sua qualidade de vida, além de que dificulta o seu tratamentoA comunicação entre o trato gastrointestinal (GI) e o cérebro, denominada Eixo Intestino-Cérebro, parece estar correlacionada com o desenvolvimento e progressão da DP. Esta interação é possível através de várias vias: neuronal, endócrina, imune ou metabólica. Este conhecimento abre a possibilidade de novas formas de atuação na DP, através de estratégias que foquem o trato GI. Neste contexto, a utilização de alimentos ricos em polifenóis surge como uma alternativa terapêutica promissora. Estas moléculas estão especialmente presentes na dieta Mediterrânea, rica no consumo de frutos e vegetais. Estes compostos têm propriedades anti-inflamatórias e antioxidantes relevantes, bem como a capacidade de modular o microbioma intestinal, componentes críticos da comunicação intestino-cérebro e da patofisiologia da DP.A Doença de Parkinson (DP) é uma das doenças neurodegenerativas mais comuns. O diagnóstico da DP é realizado numa fase tardia, onde o doente apresenta sintomas motores (SM) graves e em que já há um elevado grau de neurodegeneração. Além disso, os fármacos utilizados não impedem a progressão da doença, apenas aliviam os SM. Assim, seria importante realizar um diagnóstico mais precoce e encontrar alternativas para a prevenção e tratamento da DP.
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, characterized by the loss of dopaminergic neurons. It is usually diagnosed at an advanced stage of the disease, where patients have motor symptoms that significantly reduce their quality of life and make treatment difficult.Communication between the gastrointestinal tract (GI) and the brain, called the Gut-Brain Axis, seems to be correlated with the development and progression of PD. This interaction occurs through several pathways: neuronal, endocrine, immune or metabolic. This knowledge brings alternatives in PD management, using strategies that focus the GI tract.In this context, the use of polyphenol-rich food appears as a promising therapeutic alternative. These molecules are vastly present in the Mediterranean diet, due to fruit and vegetable consumption. These compounds have relevant anti-inflammatory and antioxidant properties as well as the ability to modulate the intestinal microbiome, critical components of GI-brain communication and the pathophysiology of PD.Parkinson's disease (PD) is one of the most common neurodegenerative diseases. The diagnosis of PD is performed at a later stage, where the patient has severe motor symptoms (MS) and in which there is already a high degree of neurodegeneration. In addition, the drugs used do not prevent the progression of the disease, they only relieve MS. Thus, it would be important to carry out an earlier diagnosis and to find alternatives for the prevention and treatment of PD.
Cusimano, Frank Anthony. „Engineered bacteria for the modulation of intestinal physiology, inflammation, and behavior along the microbiome-gut-brain axis“. Thesis, 2019. https://doi.org/10.7916/d8-97dx-7887.
Der volle Inhalt der QuelleCadima, Joana Catarina Pinto. „"O eixo microbiota-intestino-cérebro na Doença de Parkinson"“. Master's thesis, 2020. http://hdl.handle.net/10316/93079.
Der volle Inhalt der QuelleA Doença de Parkinson (DP) é uma doença neurodegenerativa caracterizada pela degeneração e morte dos neurónios dopaminérgicos na substância nigra pars compacta,acompanhada por sinucleinopatia.Vários estudos sugerem que a disfunção mitocondrial, o stress oxidativo, a neuroinflamação e a agregação da α-sinucleína desempenham um importante papel na neurodegeneração. No entanto, o que despoleta tais mecanismos e torna a neurodegeneração progressiva e descontrolada permanece largamente por esclarecer. Neste contexto,recentemente, surgiram evidências inovadoras de que a DP poderá ter início no intestino e que o microbiota intestinal, um importante modulador da complexa comunicação bidirecional que ocorre entre o cérebro e o sistema gastrointestinal (eixo microbiota-intestino-cérebro),exercerá um papel chave na patogénese desta doença neurodegenerativa.Dado a etiologia da DP não se encontrar ainda esclarecida, esta doença não tem cura,sendo fundamental desenvolver novas estratégias terapêuticas capazes de prevenir e/ou travar a neurodegeneração. Neste contexto, a utilização de probióticos, prebióticos, polifenóis e outros componentes da dieta capazes de modular o microbiota intestinal poderão vir a constituir importantes estratégias terapêuticas no contexto da DP.No presente documento, serão abordados vários mecanismos moleculares considerados relevantes na degeneração e morte dos neurónios dopaminérgicos que ocorre na DP. Será também discutido o papel do eixo microbiota-intestino-cérebro no desenvolvimento de tais mecanismos, bem como a potencial utilização de terapias inovadoras baseadas na modulação do microbiota.
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration and death of dopaminergic neurons in the substantia nigra pars compacta,accompanied by synucleinopathy.Several studies suggest that mitochondrial dysfunction, oxidative stress,neuroinflammation and α-synuclein play an important role in neurodegeneration.However, what triggers such mechanisms and makes neurodegeneration progressive and uncontrolled remains largely unclear. In this context, recently, several evidences strongly suggest that PD may start in the intestine and that the intestinal microbiota, an important modulator of the complex bidirectional communication that occurs between the brain and the gastrointestinal system (microbiota-gut-brain axis), may play a key role in the pathogenesis of this neurodegenerative disease.Since the etiology of PD remains unclear, this disease has no cure, and it is essential to develop new therapeutic strategies capable of preventing and/or stop the neurodegeneration.In this context, the use of probiotics, prebiotics, polyphenols, and other dietary components able of modulating the intestinal microbiota may become important therapeutic strategies in the context of neurodegenerative diseases.In this document, several molecular mechanisms underlying the degeneration and death of dopaminergic neurons that occur in PD will be discussed. The role of the microbiota-gut brain axis in the development of these mechanisms of neurodegeneration as well as the potential use of therapies based on the modulation of microbiota will also be discussed.
Ribeiro, Andreia. „Probióticos e efeitos terapêuticos em patologias do sistema nervoso central“. Master's thesis, 2021. http://hdl.handle.net/10284/10462.
Der volle Inhalt der QuelleThe gastrointestinal tract of a healthy individual is colonized by a wide variety and quantity of microorganisms that make up the intestinal microbiota, playing an important role in metabolic, nutritional, physiological and immunological processes. In situations of dysbiosis, resulting from imbalances in the composition or function of the species that make up the microbiota, immune function may be compromized, increasing the susceptibility of developing allergies, metabolic changes, inflammatory diseases and neurodegenerative diseases. Probiotics are food supplements containing live microorganisms that, when administered in reasonable amounts, will be beneficial to the health of their consumer or host. Its exogenous administration allows colonization and stabilization of the microflora composition, restoring its vital physiological function, after imbalance due to modern lifestyle and associated diseases. Probiotic metabolites, through diverse mechanisms of action, play an important role in immunological modulation and maintenance of microbiota homeostasis. The Microbiota-Gut-Brain Axis was recently identified with the discovery of several interconnected hormonal and biochemical pathways linking the gastrointestinal tract and the brain. This Axis plays an important role in the regulation of host health by allowing bidirectional communication between the intestine and the brain, thus suggesting probiotic use as a promising therapeutic strategy for the treatment of central nervous system diseases such as multiple sclerosis, Parkinson's disease and Alzheimer's disease.
Borrelli, Luca. „THE MICROBIOTA-GUT-BRAIN AXIS. A STUDY IN ZEBRAFISH (DANIO RERIO)“. Tesi di dottorato, 2015. http://www.fedoa.unina.it/10221/1/Borrell_Luca.pdf.
Der volle Inhalt der QuelleBarros, João Tomás da Silva. „Changes in the Gut-Brain axis during aging“. Master's thesis, 2020. http://hdl.handle.net/10316/93972.
Der volle Inhalt der QuelleAtualmente, pensa-se que inflamação sub-crónica e um microbioma intestinal alterado poderão estar subjacentes à patogénese de doenças neurodegenerativas, tais como na doença de Parkinson. O descrito aumento do número de citocinas pró-inflamatórias tanto no sangue, como em biópsias colónicas de doentes de Parkinson permitiu conectar, assim, imunidade gastrointestinal com inflamação. Uma vez que os pacientes desta doença muitas vezes apresentam disfunção intestinal acrescenta peso à importância da interação intestino-cérebro no desenvolvimento da neurodegeneração. Uma vez que perturbações gastrointestinais podem ocorrer até décadas antes do aparecimento de sintomas motores, mudanças no microbioma intestinal poderão ser identificadas como prognóstico antecipado. Assim, a disrupção entre bactérias comensais e patogénicas no intestino, tal como acontece com o envelhecimento, poderá aumentar a suscetibilidade à doença de Parkinson.Este estudo teve como objetivo verificar que as alterações que ocorrem no microbioma com o envelhecimento, deixam ratinhos mais suscetíveis ao desenvolvimento da doença de Parkinson. Mais, ponderamos que a acumulação de ferro no intestino durante o envelhecimento fosse a causa deste desequilíbrio, um processo que poderia ser reversível com terapia de quelantes de ferro, revertendo assim a inflamação intestinal. Este estudo procurou ainda descobrir se uma redução de ferro no intestino seria suficiente para reduzir a neuroinflamação mediada pelas interações intestino-cérebro, e, como tal, a severidade da doença de Parkinson em ratinhos.Ratinhos C57BL/6 foram usados como modelo pré-clínico de modo a alcançar os objetivos deste estudo. Comparações entre ratinhos relativamente novos (8-12 semanas) e velhos (52-60 semanas) foram realizadas de forma a analisar a inflamação intestinal e a acumulação de ferro, com ou sem a administração de terapias quelantes. As interações intestino-cérebro foram avaliadas associando os resultados obtidos no intestino com um aumento na neuroinflamação e acumulação de ferro no cérebro. Um modelo farmacológico da doença de Parkinson foi induzido através da administração de 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), uma neurotoxina exclusiva dos neurónios dopaminérgicos da substantia nigra cérebro. Transplantes fecais também foram efetuados para avaliar se a alteração do microbioma intestinal influencia o perfil neuro inflamatório de ratos velhos e, consequentemente, a severidade da doença.Dados preliminares a suportar a hipótese colocada já foram adquiridos pelo mesmo laboratorio, tendo sido crucial a sua validação com o plano experimental proposto. Esta tese almejou conseguir provar que as mudanças no microbioma com o envelhecimento são capazes de influenciar o fenótipo neuro-inflamatório de ratinhos velhos, aumentando a sua suscetibilidade à doença. Esperou-se também mostrar que os mecanismos moleculares subjacentes a este fenómeno, necessitavam de acumulação de ferro no intestino, um processo que aumenta a patogenicidade bacteriana e modula a resposta imune.
Low-grade chronic inflammation and altered composition of gut microbiota have been suggested to underlie the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease (PD). An increased level of pro-inflammatory cytokines was found in both peripheral blood and colonic biopsies of PD patients, an observation that allowed linking gut immunity and inflammation. The notion that PD patients usually present intestinal dysfunction and constipation further strengthens the importance of a gut-brain interaction during the development of neurodegenerative diseases, like PD. Since gastro-intestinal (GI) manifestations often occur a decade before the appearance of severe motor deficits, changes in gut microbes can be identified as early PD symptoms. Hence, the disruption between commensal and pathogenic bacteria in the gut, as physiologically occurs during aging, is thought to favor an increased susceptibility to PD.This study aimed to verify that changes occurring in the gut microbiota during aging rendered mice more susceptible to PD. Moreover, we hypothesized that the accumulation of iron in the gut during aging was the underlying cause of this unbalance, a process that could be reversed with the administration of iron chelators that prevent these changes to trigger gut inflammation. This study was also able to assess whether a reduction of iron in the gut was capable to reduce the gut-brain axis-induced neuroinflammation and, as such, the severity of PD, in mice.C57BL/6 mice were used, as a pre-clinical animal model, to address the objectives of this study. Comparisons between relatively young (8-12-weeks old) and old (52-60-weeks old) mice was carried out, in terms of gut inflammation and iron accumulation, with or without the administration of iron chelation therapy. The gut-brain axis was evaluated by associating the results obtained in the gut with an increased neuroinflammation and iron accumulation in the brain. A pharmacological model of PD was induced by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin known to target exclusively dopaminergic neurons in the substantia nigra of the brain. Fecal transplantation was also used to address whether changing the composition of the gut microbiota could influence the neuro-inflammatory profile of aged mice and, subsequently, the severity of PD.Preliminary data supporting the hypotheses put forth were already obtained in the laboratory, so it was crucial their validation with the experimental plan proposed to complete my studies. This research was expected to prove that changes in gut microbiota occurring during aging were capable to influence the neuro-inflammatory phenotype of older mice and to increase the severity of PD. Furthermore, it was also expected to show that the molecular mechanism underlying this phenomenon relied on the accumulation of iron in the gut, a process known to increase bacteria pathogenicity and to modulate the inflammatory response. Lastly this study also addressed the salutary effect of iron chelation therapy in PD, providing proof of concept that its beneficial effects were also due to its ability to diminish gut inflammation.
Outro - Investigator Programme (IF/01495/2015). Financiamento concedido pela Fundação pela Ciência e Tecnologia (FCT) para o projeto de investigação científica titulado: “Immunity and inflammation in Parkinson’s disease”.
Ficara, Austin Charles. „Influence of the human gut microbiota on depression and anxiety“. Thesis, 2019. https://hdl.handle.net/2144/38603.
Der volle Inhalt der QuelleKosenkova, Inna. „Possible impact of the gut microbiota on the excitability of the brain“. Doctoral thesis, 2018. http://hdl.handle.net/11562/978978.
Der volle Inhalt der QuelleChaung, Chung-Wei, und 莊仲薇. „Effects of Lactobacillus reuteri YM0570 and commercial multiple strain probiotics product on microbiota-gut-brain axis in antibiotics-induced dysbiosis mice model“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/qzp4jk.
Der volle Inhalt der QuelleProsperi, Margherita. „In-depth Understanding of Gastrointestinal (GI) Problems in Autism Spectrum Disorder (ASD): Nature, Expression, and Possible Therapeutic Approaches“. Doctoral thesis, 2022. http://hdl.handle.net/2158/1265034.
Der volle Inhalt der QuelleFerreira, Ana Carolina Barros Bemhaja. „Disfunção da Barreira Hematoencefálica na Esclerose Múltipla: a chave do problema ou da solução?“ Master's thesis, 2018. http://hdl.handle.net/10316/84372.
Der volle Inhalt der QuelleA Esclerose Múltipla (EM) é uma doença autoimune com elevada incidência a nívelglobal, que atinge em maior escala indivíduos do sexo feminino. Pensa-se que a sua etiologia assenta numa complexa associação de diversos fatores ambientais com determinadas características genéticas preexistentes. Esta doença está associada a uma desregulação do sistema imunitário e afeta o sistema nervoso central (SNC), causando desmielinização e degradação axonal. Assim, a EM assume um caráter neurodegenerativo e neuroinflamatório, com consequências a nível físico, cognitivo e emocional. Este descontrolo da resposta imunitária é considerado o principal responsável pela fisiopatologia da EM, pelo que as armas terapêuticas existentes para modificar o curso da doença se baseiam, fundamentalmente, em mecanismos de imunomodulação. Contudo, a barreira hematoencefálica (BHE) também parece exercer um papel essencial nos processos fisiopatológicos da doença, uma vez que a sua estrutura se encontra comprometida, impedindo o correto desempenho da sua função protetora do SNC. Por outro lado, verifica-se a existência de uma interação bidirecional entre a microbiota intestinal e a BHE, o que influencia a sua estabilidade e integridade.Neste sentido, é importante esclarecer a correlação desta barreira e do ambiente entérico com o desenvolvimento de EM, de modo a poder conceber estratégias farmacológicas promissoras com mecanismos de ação inovadores, capazes de revolucionar o mercado terapêutico desta doença, melhorando a sua evolução, a qualidade de vida e o bem-estar dos doentes.
Multiple sclerosis (MS) is an autoimmune disease with a high global incidence, which impacts female individuals on a larger scale. It is thought that its etiology is based on a complex association of several environmental factors with preexisting genetic features. This disease is associated to an immune system dysregulation and affects the central nervous system (CNS), causing demyelination and axonal damage. Therefore, MS assumes a neurodegenerative and neuroinflammatory character, with physical, cognitive and emotional consequences. This dysregulation of the immune response is considered the main factor responsible for MS pathophysiology, so the existing therapeutic weapons to modify the disease course are mainly based on immunomodulation mechanisms. Nevertheless, the blood-brain barrier (BBB) seems to play an essential role in the pathophysiological processes of the disease, since its structure is compromised, hampering the correct performance of its protective function of the CNS. On the other hand, there is a bidirectional interaction between the gut microbiota and the BBB, which influences its stability and integrity. Thus, it is important to clarify the correlation of this barrier and the enteric environment with the development of MS, so that it is possible to design promising pharmacological strategies with innovative mechanisms of action, capable of revolutionizing the therapeutic market of this disease in order to improve its evolution, patients’ quality of life and well-being.
Ganci, Michael. „Has Psychology Ignored Our Gut Feelings? Exploring the Relationship Between Gut Microbiota and Psychological Symptoms: A Call for a Paradigm Shift“. Thesis, 2021. https://vuir.vu.edu.au/43572/.
Der volle Inhalt der QuelleAmbrožová, Lucie. „Střevní mikrobiota a poruchy nálady“. Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-347667.
Der volle Inhalt der QuelleCeppa, Florencia Andrea. „Diet:microbiota interaction in the gut focus on amino acid metabolism“. Doctoral thesis, 2016. http://hdl.handle.net/10449/33118.
Der volle Inhalt der Quelle