Dissertationen zum Thema „Interval“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Interval" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Korzenowski, Heidi. „Estudo sobre resolucao de equacoes de coeficientes intervalares“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1994. http://hdl.handle.net/10183/25863.
Der volle Inhalt der QuelleThe aim of this work is to determine the solution set of some Equations of Interval Coefficients. The study use a Theory of Interval Approximation. The begining of this theory was described by [ACI91]. In this theory the equality for intervals is replaced by an approximation relation. When we make use of that relation to solve interval equations, it's possible to obtain an optimal solution, i.e., to get an interval solution that contain all of real solutions of the real equations envolved in the interval equation. By using the equality of Classical Interval Theory for solving interval equations we can not get an optimal solution, that is, the interval solution in the most of equations not consider some real solutions of real equations that belong to the interval equation. We present some basic concepts and analyse some properties at the interval space (1(R), E, -a x , 1). Different kind of functions are showed in this space in order to obtain the range, the solution caracterization and the graphic identification of the optimal and external solution region, for each kind of function. The representation of intervals in /(R) is determined in a half plane of axes X - , X+, where X - represent the lower endpoint and X+ represent the upper endpoint of the intervals. The nonregular intervals are defined in /(R), which are determined in an other half plane. In this interval space are presenting some specific concepts, as well as arithmetical operations and some remarks about nonregular intervals. The interval space (1(R), +, •, C, Ex , 1) have a similar structure to a field, so it's possible to solve interval coefficients equations analogously as to solve real equations in the real space. We present the solution of linear interval equations and we determine an interval formula to solve square interval equation. We present some intervals iterated methods for functions that have degree greater than 2 that allow to get an interval solution of interval functions. Finally we show some basic concepts about the interval matrix space Af,„„(IR)) and present direct methods for the resolution of linear interval sistems.
Taga, Marcel Frederico de Lima. „Regressão linear com medidas censuradas“. Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05122008-005901/.
Der volle Inhalt der QuelleWe consider a simple linear regression model in which both variables are interval censored. To motivate the problem we use data from an audiometric study designed to evaluate the possibility of prediction of behavioral thresholds from physiological thresholds. We develop prediction intervals for the response variable, obtain the maximum likelihood estimators of the proposed model and compare their performance with that of estimators obtained under ordinary linear regression models.
Holbig, Carlos Amaral. „Métodos intervalares para a resolução de sistemas de equações lineares“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1996. http://hdl.handle.net/10183/23432.
Der volle Inhalt der QuelleThe study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
Villanueva, Fabiola Roxana. „Contributions in interval optimization and interval optimal control /“. São José do Rio Preto, 2020. http://hdl.handle.net/11449/192795.
Der volle Inhalt der QuelleResumo: Neste trabalho, primeiramente, serão apresentados problemas de otimização nos quais a função objetivo é de múltiplas variáveis e de valor intervalar e as restrições de desigualdade são dadas por funcionais clássicos, isto é, de valor real. Serão dadas as condições de otimalidade usando a E−diferenciabilidade e, depois, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade usando a gH−diferenciabilidade total são do tipo KKT e as suficientes são do tipo de convexidade generalizada. Em seguida, serão estabelecidos problemas de controle ótimo nos quais a funçãao objetivo também é com valor intervalar de múltiplas variáveis e as restrições estão na forma de desigualdades e igualdades clássicas. Serão fornecidas as condições de otimalidade usando o conceito de Lipschitz para funções intervalares de várias variáveis e, logo, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade, usando a gH−diferenciabilidade total, estão na forma do célebre Princípio do Máximo de Pontryagin, mas desta vez na versão intervalar.
Abstract: In this work, firstly, it will be presented optimization problems in which the objective function is interval−valued of multiple variables and the inequality constraints are given by classical functionals, that is, real−valued ones. It will be given the optimality conditions using the E−differentiability and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability are of KKT−type and the sufficient ones are of generalized convexity type. Next, it will be established optimal control problems in which the objective function is also interval−valued of multiple variables and the constraints are in the form of classical inequalities and equalities. It will be furnished the optimality conditions using the Lipschitz concept for interval−valued functions of several variables and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability is in the form of the celebrated local Pontryagin Maximum Principle, but this time in the intervalar version.
Doutor
Yang, Joyce C. „Interval Graphs“. Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/83.
Der volle Inhalt der QuelleFranciosi, Beatriz Regina Tavares. „Representação geométrica de intervalos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1999. http://hdl.handle.net/10183/17751.
Der volle Inhalt der QuelleThis thesis presents a framework enabling the visual analysis of intervals, obtained by mapping geometric properties of the cartesian plane into interval sets to obtain a graphical representation. This new approach makes possible a dual interval representation and the immediate visual analysis of several relationships in (IR, <=) and (IR, C). In this sense, the set of degenerated intervals is a special case of this approach as they are represented by the straight line y=x. In turn, the order relation in (IR, C) is represented through the half-plane above the straight line y = x, denoted IR plane. Applying this framework, the visual interpretation of most interval operations is obtained directly from the graphical representation of the operands and the operations being studied. On the other hand, some experiments on interval visual analysis were developed with good final results. Thus, new properties and unusual interpretations for known operations can be developed with rather small effort. Moreover, this representation can be easily embedded into a running algorithm, to observe convergence and behavior of interval iterations, as one can easily see how intervals change with respect to midpoint and radius, as well as with respect to each other. The validation of this new approach was carried through the geometric solution of linear interval equations. This result was analyzed in order to verify the effective contribution of this geometrical representation in the context of interval arithmetic.
Santana, Fabiana Trist?o de. „Uma fundamenta??o para sinais e sistemas intervalares“. Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15158.
Der volle Inhalt der QuelleCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Neste trabalho utiliza-se a matem?tica intervalar para estabelecer os conceitos intervalares das principais ferramentas utilizadas em processamento digital de sinais. Mais especificamente, foram desenvolvidos aqui as abordagens intervalares para sinais, sistemas, amostragem, quantiza??o, codifica??o, transformada Z e transformada de Fourier. ? feito um estudo de algumas aritm?ticas que lidam com n?meros complexos sujeitos ? imprecis?es, tais como: aritm?tica complexa intervalar (ou retangular), aritm?tica complexa circular, aritm?tica setorial e aritm?tica intervalar polar. A partir da?, investiga-se algumas propriedades que ser?o relevantes para o desenvolvimento e aplica??o no processamento de sinais discretos intervalares. Mostra-se que nos conjuntos IR e R(C), seja qual for a aritm?tica correta adotada, n?o se tem um corpo, isto ?, os elementos desses conjuntos n?o se comportam como os n?meros reais ou complexos com suas aritm?ticas cl?ssicas e que isso ir? requerer uma avalia??o matem?tica dos conceitos necess?rios ? teoria de sinais e a rela??o desses com as aritm?ticas intervalares. Tamb?m tanto ? introduzido o conceito de amplitude intervalar complexa, como alternativa ? defini??o cl?ssica quanto utiliza-se a ordem de Kulisch-Miranker para n?meros complexos afim de que se escreva n?meros complexos intervalares na forma de intervalos, o que torna poss?vel as opera??es atrav?s dos extremos. Essa rela??o ? utilizada em propriedades de somas de intervalos de n?meros complexos. O uso de sinais e sistemas intervalares foi motivado pela representa??o intervalar num sistema de ponto flutuante abstrato. Isto ?, se um n?mero x 2 R n?o ? represent?vel em um sistema de ponto flutuante F, ele ? mapeado para um intervalo [x;x], tal que x ? o maior dos n?meros menores que x represent?vel em F e x ? o menor dos n?meros maiores que x represent?vel em F. A representa??o intervalar ? importante em processamento digital de sinais, pois a imprecis?o em dados ocorre tanto no momento da medi??o de determinado sinal, quanto no momento de process?-los computacionalmente. A partir da?, define-se sinais e sistemas intervalares que assumem tanto valores reais quanto complexos. Para isso, utiliza-se o estudo feito a respeito das aritm?ticas complexas intervalares e mostram-se algumas propriedades dos sistemas intervalares, tais como: causalidade, estabilidade, invari?ncia no tempo, homogeneidade, aditividade e linearidade. Al?m disso, foi definida a representa??o intervalar de fun??es complexas. Tal fun??o estende sistemas cl?ssicos a sistemas intervalares preservando as principais propriedades. Um conceito muito importante no processamento digital de sinais ? a quantiza??o, uma vez que a maioria dos sinais ? de natureza cont?nua e para process?-los ? necess?rio convert?-los em sinais discretos. Aqui, este processo ? descrito detalhadamente com o uso da matem?tica intervalar, onde se prop?em, inicialmente, uma amostragem intervalar utilizando as id?ias de representa??o no sistema de ponto flutuante. Posteriormente, s?o definidos n?veis de quantiza??o intervalares e, a partir da?, ? descrito o processo para se obter o sinal quantizado intervalar e s?o definidos o erro de quantiza??o intervalar e o sinal codificado intervalar. ? mostrado que os n?veis de quantiza??o intervalares representam os n?veis de quantiza??o cl?ssicos e o erro de quantiza??o intervalar representa o e erro de quantiza??o cl?ssico. Uma estimativa para o erro de quantiza??o intervalar ? apresentada. Utilizando a aritm?tica retangular e as defini??es e propriedades de sinais e sistemas intervalares, ? introduzida a transformada Z intervalar e s?o analisadas as condi??es de converg?ncia e as principais propriedades. Em particular, quando a vari?vel complexa z ? unit?ria, define-se a transformada de Fourier intervalar para sinais discretos no tempo, al?m de suas propriedades. Por fim, foram apresentadas as implementa??es dos resultados que foram feitas no software Matlab
Alparslan, Gok Sirma Zeynep. „Cooperative Interval Games“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610337/index.pdf.
Der volle Inhalt der QuelleSainudiin, R. „Machine Interval Experiments“. Thesis, University of Canterbury. Mathematics and Statistics, 2005. http://hdl.handle.net/10092/2833.
Der volle Inhalt der QuelleAlshammery, Hafiz Jaman 1971. „Interval attenuation estimation“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9877.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 55-56).
by Hafiz Jaman Alshammery.
S.M.
Hannah, Stuart A. „Interval order enumeration“. Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26137.
Der volle Inhalt der QuelleJarmolowicz, David P. „The fixed-interval scallop effects of reinforcer magnitude and interval length /“. Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10316.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains vii, 50 p. : ill. Includes abstract. Includes bibliographical references (p. 37-41).
SOUZA, Leandro Carlos de. „Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações“. Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17640.
Der volle Inhalt der QuelleMade available in DSpace on 2016-08-08T12:52:58Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) teseCinLeandro.pdf: 1316077 bytes, checksum: 61e762c7526a38a80ecab8f5c7769a47 (MD5) Previous issue date: 2016-01-18
Um intervalo é um tipo de dado complexo usado na agregação de informações ou na representação de dados imprecisos. Este trabalho apresenta duas novas representações para intervalos com o objetivo de se construir novos métodos de agrupamento e regressão linear para este tipo de dado. O agrupamento por nuvens dinâmicas define partições nos dados e associa protótipos a cada uma destas partições. Os protótipos resumem a informação das partições e são usados na minimização de um critério que depende de uma distância, responsável por quantificar a proximidade entre instâncias e protótipos. Neste sentido, propõe-se a formulação de uma nova distância híbrida entre intervalos baseando-se em distâncias para pontos. Os pontos utilizados são obtidos dos intervalos através de um mapeamento. Também são propostas duas versões com pesos para a distância criada: uma com pesos no hibridismo e outra com pesos adaptativos. Na regressão linear, propõe-se a representação dos intervalos através da equação paramétrica da reta. Esta parametrização permite o ajuste dos pontos nas variáveis regressoras que dão as melhores estimativas para os limites da variável resposta. Antes da realização da regressão, um critério é calculado para a verificação da coerência matemática da predição, na qual o limite superior deve ser maior ou igual ao inferior. Se o critério mostra que a coerência não é garantida, propõe-se a aplicação de uma transformação sobre a variável resposta. Assim, este trabalho também propõe algumas transformações que podem ser aplicadas a dados intervalares, no contexto de regressão. Dados sintéticos e reais são utilizados para comparar os métodos provenientes das representações propostas e aqueles presentes na literatura.
An interval is a complex data type used in the information aggregation or in the representation of imprecise data. This work presents two new representations of intervals in order to construct a new cluster method and a new linear regression method for this kind of data. Dynamic clustering defines partitions into the data and it defines prototypes associated with each one of these partitions. The prototypes summarize the information about the partitions and they are used in a minimization criterion which depends on a distance, which is responsible for quantifying the proximity between instances and prototypes. In this way, it is proposed a new hybrid distance between intervals based on a family of distances between points. Points are obtained from the interval through a mapping. Also, it is proposed two versions of the hybrid distance, both with weights: one with weights in hybridism and other with adaptive weights. In linear regression, it is proposed to represent the intervals through the parametric equation of the line. This parametrization allows to find the set of points in the regression variables corresponding to the best estimates for the response variable limits. Before the regression construction, a criterion is computed to verify the mathematical consistency of prediction, where the upper limit must be greater than or equal to the lower. If the test shows that consistency is not guaranteed, then the application proposes a transformation of the response variable. Therefore, this work also proposes some transformations that can be applied to interval data in the regression context. Synthetic and real data are used to compare the proposed methods and those one proposed on literature.
Ozturk, Ufuk. „Interval Priority Weight Generation From Interval Comparison Matrices In Analytic Hierarchy Process“. Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611031/index.pdf.
Der volle Inhalt der QuelleAhmed, Mustaq. „Ordered Interval Routing Schemes“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1137.
Der volle Inhalt der QuellePawlik, Amadeusz, und Henry Andersson. „Visualising Interval-Based Simulations“. Thesis, Högskolan i Halmstad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-28592.
Der volle Inhalt der QuelleWang, Jian. „Interval-based uncertain reasoning“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0014/MQ33462.pdf.
Der volle Inhalt der QuelleMalins, E. J. „Hard-wiring interval arithmetic“. Thesis, University of Ulster, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554235.
Der volle Inhalt der QuelleHuamán, Gino Gustavo Maqui. „Interval analysis and applications /“. São José do Rio Preto, 2018. http://hdl.handle.net/11449/153720.
Der volle Inhalt der QuelleBanca: Weldon A. Lodwick
Banca: Yurilev Chalco Cano
Banca: Ulcilea Alves Severino Leal
Banca: Valeriano Antunes de Oliveira
Resumo: Esta Tese trabalha com alguns conceitos fundamentais da analise intervalar e suas aplicações. Em primeiro lugar, a Tese aborda a álgebra de funções de valor intervalar gH diferenciáveis. Especificamente, damos condições para a gH- diferenciabilidade da soma e gH-diferença de duas funções de valor intervalar gH-diferenciáveis; também para o pro duto e composição de uma função real diferenciável e uma função de valor intervalar gH diferenciável. Em segundo lugar, a Tese e dedicada a obtenção de condições necessárias e suficientes para problemas de otimização com funções objetivas de valor intervalar. Essas funções objetivas são obtidas a partir de funções contínuas usando aritmética intervalar restrita. Damos um conceito de derivada para esta classe de funções de valor intervalar e, em seguida, introduzimos o conceito de ponto estacionário. Encontramos as condições necessárias com base na definição dos pontos estacionários e provamos que essas condições também são suficientes nas noções de convexidade generalizada. Obtemos também condições necessárias e suficientes para o problema de otimização intervalar com restrições. E, finalmente, lidamos com o espaço quociente de intervalos I em relação a família de intervalos simétricos e dado um conceito de diferenciabilidade para funções de classes de equivalência, fazemos uma comparação com outros conceitos de diferenciabilidade. Alguns exemplos e contraexemplos ilustram os resultados obtidos
Abstract: This Thesis works with some fundamentals concepts of interval analysis and it applica tions. First of all, the thesis deals with the algebra of gH-diferentiable interval-valued functions. Specifically, we give conditions for the gH-diferentiability of the sum and gH-diference of two gH-diferentiable interval-valued functions; also for the product and composition of a diferentiable real function and a gH-diferentiable interval-valued func tion. Second, the thesis is devoted to obtaining necessary and sucient conditions for optimization problems with interval-valued objective functions. These objective func tions are obtained from continuous functions by using constrained interval arithmetic. We give a concept of derivative for this class of interval-valued functions and then we introduce the concept of stationary point. We find necessary conditions based on the stationary points definition and we prove that these conditions are also sucient under generalized convexity notions. We obtain the necessary and sucient conditions for con strained interval-valued optimization problem. And finally, we deal with the quotient space of intervals I with respect to the family of symmetric intervals and given a concept of di↵erentiability for equivalence classes-valued functions, we make a comparison with other concepts of diferentiability. Some examples and counterexamples illustrates the obtained results.
Doutor
Oberholzer, Johannes Francois. „Agent Interval Temporal Logic“. Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/74826.
Der volle Inhalt der QuelleDissertation (MA)--University of Pretoria, 2020.
Centre for Artificial Intelligence Research at CSIR
Philosophy
MA
Unrestricted
Teng, Xuan. „Internal Navigation through Interval Vibration Impacts for Visually Impaired Persons: Enhancement of Independent Living“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1471347436.
Der volle Inhalt der QuelleDimuro, Gracaliz Pereira. „Domínios intervalares da matemática computacional“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1991. http://hdl.handle.net/10183/24890.
Der volle Inhalt der QuelleThe importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
Ganjali, Yashar. „Multi-dimensional Interval Routing Schemes“. Thesis, University of Waterloo, 2001. http://hdl.handle.net/10012/1207.
Der volle Inhalt der QuelleCarlson, Rosalie J. „Voter Compatibility In Interval Societies“. Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/hmc_theses/50.
Der volle Inhalt der QuelleBeltz, John D. „Physiological response to interval training“. Virtual Press, 1987. http://liblink.bsu.edu/uhtbin/catkey/486191.
Der volle Inhalt der QuelleHartigan-Go, Kenneth. „Drug induced QT interval prolongation“. Thesis, University of Newcastle Upon Tyne, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389560.
Der volle Inhalt der QuelleSelfridge, Colin. „Stability of stochastic interval systems“. Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248725.
Der volle Inhalt der QuelleTrejo, Abad Sofía. „Complex bounds for interval maps“. Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/62056/.
Der volle Inhalt der QuelleFox, Thomas Charles 1960. „Evaluation of change interval policies“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277160.
Der volle Inhalt der QuelleMustafa, Mohamed. „Guaranteed SLAM : an interval approach“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/guaranteed-slaman-interval-approach(50242329-e0fa-43dd-881b-6719c5504231).html.
Der volle Inhalt der QuelleAmin, Raid Widad. „Variable sampling interval control charts“. Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/82617.
Der volle Inhalt der QuellePh. D.
Ramadan, Khaled Carleton University Dissertation Mathematics and Statistics. „Linear programming with interval coefficients“. Ottawa, 1996.
Den vollen Inhalt der Quelle findenHefley, Erin. „Interpregnancy Interval and Neonatal Outcomes“. Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/315902.
Der volle Inhalt der QuelleObjectives: Interpregnancy interval (IPI), the time period between the end of one pregnancy and the conception of the next, can have a significant impact on maternal and infant outcomes. This study examines the relationship between interpregnancy interval and neonatal outcomes of low birth weight, preterm birth, and specific neonatal morbidities. Study Design: Retrospective cohort study comparing neonatal outcomes across 6 categories of IPI using data on 202,600 cases identified from Arizona birth certificates and the Newborn Intensive Care Program data. Comparisons between groups were made using odds ratios and 95% confidence intervals, and multivariable logisitic regression analysis. Results: Interpregnancy intervals of < 12 months and ≥ 60 months were associated with low birth weight, preterm birth, and small for gestational age births. The shortest and longest IPI categories were also associated with specific neonatal morbidities, including periventricular leukomalacia, bronchopulmonary dysplasia, intraventricular hemorrhage, apnea bradycardia, respiratory distress syndrome, transient tachypnea of the newborn, and suspected sepsis. Relationships between interpregnancy interval and specific neonatal morbidities did not remain significant when adjusted for birth weight and gestational age. Conclusions: Significant differences in neonatal outcomes (preterm birth, low birth weight, and small for gestational age) were observed between IPI categories. Consistent with previous research, interpregnancy intervals < 12 months and ≥ 60 months appear to be associated with increased risk of poor neonatal outcomes. Any difference in specific neonatal morbidities between IPI groups appears to be mediated through increased risk of low birth weight and preterm birth by IPI.
Mohd, Ismail Bin. „Global optimization using interval arithmetic“. Thesis, University of St Andrews, 1987. http://hdl.handle.net/10023/13824.
Der volle Inhalt der QuelleSolanki, Maitri. „Microbiome Biomarkers - Post Mortem Interval“. Thesis, Solanki, Maitri (2019) Microbiome Biomarkers - Post Mortem Interval. Masters by Coursework thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/48022/.
Der volle Inhalt der QuelleTravers, Anthony J. „Interval-based qualitative spatial reasoning“. Thesis, Curtin University, 1998. http://hdl.handle.net/20.500.11937/1086.
Der volle Inhalt der QuelleTravers, Anthony J. „Interval-based qualitative spatial reasoning“. Curtin University of Technology, School of Computing, 1998. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=9539.
Der volle Inhalt der Quellein this thesis demonstrates the utility of a multi-dimensional qualitative spatial reasoning system based upon intervals. It also demonstrates how an interval representation may be constructed for datasets that have variable levels of information about relationships between intervals represented in the dataset.
Shuma, Mercy Violet 1957. „Design of a microcomputer "time interval board" for time interval statistical analysis of nuclear systems“. Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276685.
Der volle Inhalt der QuelleChan, David H. C. „Measurement of response duration and frequency using partial-interval, whole-interval, and momentary time sampling procedures“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23245.pdf.
Der volle Inhalt der QuelleSant'Ana, Edson Hansen. „A concepção intervalar em Almeida Prado: um estudo em três obras pós-ruptura“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152167.
Der volle Inhalt der QuelleSubmitted by EDSON HANSEN SANT ' ANA null (edhansen_2000@hotmail.com) on 2017-11-22T14:07:00Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-22T18:09:14Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-22T18:12:24Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-22T19:44:22Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-23T11:57:13Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-23T12:57:55Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-23T13:16:31Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-23T13:34:43Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-23T17:24:54Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-23T17:29:02Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-24T12:05:25Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-24T12:39:45Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-24T16:47:39Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-24T17:31:21Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-27T11:40:49Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-27T12:31:51Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-27T13:03:16Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-27T18:08:08Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-28T12:13:08Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-28T14:22:47Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-28T14:31:57Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Submitted by EDSON HANSEN SANT ' ANA SANT'ANA (edhansen_2000@hotmail.com) on 2017-11-28T14:37:45Z No. of bitstreams: 1 1.Tese-Unesp-2017-defesa2-digital.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Approved for entry into archive by Mariana Borges Gasparino null (mariana.borges@ia.unesp.br) on 2017-11-28T18:29:58Z (GMT) No. of bitstreams: 1 santana_eh_dr_ia.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5)
Made available in DSpace on 2017-11-28T18:29:58Z (GMT). No. of bitstreams: 1 santana_eh_dr_ia.pdf: 41089077 bytes, checksum: ebdb1b901005a1ab56739ad0e4edd650 (MD5) Previous issue date: 2017-11-08
O objeto de estudo deste trabalho é o processo intervalar na construção composicional de Almeida Prado em suas três fases pós-ruptura, chamadas de Pós-Tonal, Síntese e Pós-Moderna. A concepção intervalar do compositor é demonstrada por análises realizadas em três obras, uma de cada fase pós-ruptura: Sonata n. 3, Cartas Celestes I e Noturno n. 7, respectivamente. A análise tem sua metodologia baseada em um recorte arbitrário que buscou compreender três intervalos básicos que podem ser somados a outros três intervalos enarmônicos como ampliação das possibilidades intervalares na escrita. O desenvolvimento teórico da pesquisa aprofundou-se a partir de um foco e uma análise intervalar que, conceitualmente, buscaram uma superação terminológica de uma formulação anterior nomeada como expressividade intervalar (SANT’ANA, 2009) para a atualização terminológica definida como intervalo característico. O embasamento teórico para essa concepção intervalar deu-se a partir das proposições de Boulanger (1926), Costère (1954, 1962), Forte (1973), Straus ([1990] 2013), Pousseur ([2005] 2009) e Menezes (2002). Como contextualização crítico-histórica, foi realizada uma revisão sucinta de tendências teórico-analíticas e seus problemas, reconsiderando-se as observações de Schoenberg ([1922] 2001, [1954] 2004), Kerman ([1985] 1987), Cook (1987, 2007) e Kramer (2015). Para se validar a construção e o caráter da ferramenta teórico-analítica aqui empreendida, utilizou-se a teoria de Lacey (2008) associada à visão teórico-musicológica desses autores. Com o processo analítico, apresentado no quarto capítulo, procurou-se demonstrar a grande incidência do(s) intervalo(s) característico(s) na construção estrutural das obras, desvelando-se um número variado de estratégias composicionais adotadas por Almeida Prado associadas a esses intervalos. Ainda no quarto capítulo, foi aplicada a ferramenta denominada régua intervalar, que pode ajudar na melhor compreensão dos intervalos com mais potencial de dissonância, os quais agem por meio de interação e contraste frente ao background aparentemente tonal dos intervalos mais consonantes ligados aos primeiros sete parciais (harmônicos) da série harmônica. Assim, em uma pesquisa futura, a ferramenta e a proposição analítica aqui desenvolvidas podem contribuir na compreensão e na sistematização dos tipos de objetos harmônicos pensados como entidades tímbricas que são moldados a partir dessa concepção intervalar.
The object of study this work is the interval process in the compositional construction of Brazilian pianist and composer Almeida Prado in his three post-rupture phases, called PostTonal, Synthesis and Post-Modern. The intervalar conception of the composer is demonstrated by analyses carried out in three works - one from each post-rupture phase (Sonata n. 3, Cartas Celestes I and Noturno n. 7). The analysis has its methodology based on an arbitrary crop that sought to understand three basic intervals that can be added to three other enharmonic intervals as an extension of the interval possibilities in writing. The theoretical development of the research was deepened from a focus and an interval analysis that, conceptually, sought a terminological overcoming of an earlier formulation named as intervalar expressivity (SANT'ANA, 2009) for the terminological update defined as a characteristic interval. The theoretical basis for this interval conception came from the propositions of Boulanger (1926), Costère (1954, 1962), Forte (1973), Straus ([1990] 2013), Pousseur ([2005] 2009) and Menezes (2002). As a critical-historical context, a brief review of theoretical-analytical trends and their problems was carried out, reconsidering the observations of Schoenberg ([1922] 2001, [1954] 2004), Kerman ([1985], 1987), Cook (1987, 2007) and Kramer (2015). To validate the construction and character of the theoreticalanalytical tool undertaken here, Lacey (2008)’s theory was used associated with the theoretical-musicological view, methodologically adopted in this work. Like the analytical process contained in the fourth chapter, one tried to demonstrate the great incidence of the characteristic interval (s) in the structural construction of the works, revealing a varied number of compositional strategies adopted by Almeida Prado associated to these intervals. Still in the fourth chapter, the tool called interval rule was applied, which can help in better understanding the intervals with more potential of dissonance that act through interaction and contrast against the seemingly tonal background of the more consonant intervals linked to the first seven (harmonic) partials of the harmonic series. Thus, in a future research, the tool and the analytical proposition developed here, can contribute to the comprehension and systematization of the types of harmonic objects thought as timbral entities that are shaped from this intervalar conception.
Salas, Donoso Ignacio Antonio. „Packing curved objects with interval methods“. Thesis, Nantes, Ecole des Mines, 2016. http://www.theses.fr/2016EMNA0277/document.
Der volle Inhalt der QuelleA common problem in logistic, warehousing, industrial manufacture, newspaper paging or energy management in data centers is to allocate items in a given enclosing space or container. This is called a packing problem. Many works in the literature handle the packing problem by considering specific shapes or using polygonal approximations. The goal of this thesis is to allow arbitrary shapes, as long as they can be described mathematically (by an algebraic equation or a parametric function). In particular, the shapes can be curved and non-convex. This is what we call the generic packing problem. We propose a framework for solving this generic packing problem, based on interval techniques. The main ingredients of this framework are: An evolutionary algorithm to place the objects, an over lapping function to be minimized by the evolutionary algorithm (violation cost), and an overlapping region that represents a pre-calculated set of all the relative configurations of one object (with respect to the other one) that creates an overlapping. This overlapping region is calculated numerically and distinctly for each pair of objects. The underlying algorithm also depends whether objects are described by inequalities or parametric curves. Preliminary experiments validate the approach and show the potential of this framework
Lee, Ronnie Teng Chee. „Likelihood-based interval estimation of functionals“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0013/NQ30619.pdf.
Der volle Inhalt der QuelleJung, Aekyung. „Interval Estimation for the Correlation Coefficient“. Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/math_theses/109.
Der volle Inhalt der QuelleMukerji, Chandrika. „Register allocation using cyclic interval graphs“. Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55516.
Der volle Inhalt der QuelleAs most scientific code spend a lot of time executing loop structures, it is most crucial to perform well when register allocating for it. A good spilling algorithm and a close to optimal coloring algorithm is invaluable in minimizing the cost that may be incurred while performing register allocation for loop structures. Minimization of spill code often greatly increases the performance of the code. Our proposed spilling and coloring scheme is very well suited to these loop structures, and could be used to reap maximum benefit when used in tandem with loop scheduling algorithms (NG93, Nin93).
A collection of real program loops are used to test the effectiveness of our approach.
Narkiewicz, M. „The functional architecture of interval timing“. Thesis, City, University of London, 2018. http://openaccess.city.ac.uk/20106/.
Der volle Inhalt der QuelleZhou, Jingfang. „Interval simplex splines for scientific databases“. Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/38060.
Der volle Inhalt der QuelleShearer, J. M. „Interval methods for non-linear systems“. Thesis, University of St Andrews, 1986. http://hdl.handle.net/10023/13779.
Der volle Inhalt der QuelleBouzina, Khalid Ibn El Walid. „On interval scheduling problems: A contribution“. Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1057678953.
Der volle Inhalt der QuelleSzabó, Tamás Zoltán. „Interval filling sequences and additive functions /“. The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487844105976394.
Der volle Inhalt der QuelleHu, Yi. „Interval arithmetic and interval sparse linear equations“. 1989. http://catalog.hathitrust.org/api/volumes/oclc/20580806.html.
Der volle Inhalt der QuelleTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 45).