Auswahl der wissenschaftlichen Literatur zum Thema „Interval“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interval" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Interval"

1

Rohn, Jiří. „Interval solutions of linear interval equations“. Applications of Mathematics 35, Nr. 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lodwick, Weldon A., und Oscar A. Jenkins. „Constrained intervals and interval spaces“. Soft Computing 17, Nr. 8 (19.02.2013): 1393–402. http://dx.doi.org/10.1007/s00500-013-1006-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kleinman, Matthew R., Hansem Sohn und Daeyeol Lee. „A two-stage model of concurrent interval timing in monkeys“. Journal of Neurophysiology 116, Nr. 3 (01.09.2016): 1068–81. http://dx.doi.org/10.1152/jn.00375.2016.

Der volle Inhalt der Quelle
Annotation:
Accurate timing is critical for a wide range of cognitive processes and behaviors. In addition, complex environments frequently necessitate the simultaneous timing of multiple intervals, and behavioral performance in concurrent timing can constrain formal models of timing behavior and provide important insights into the corresponding neural mechanisms. However, the accuracy of such concurrent timing has not been rigorously examined. We developed a novel behavioral paradigm in which rhesus monkeys were incentivized to time two independent intervals. The onset asynchrony of two overlapping intervals varied randomly, thereby discouraging the animals from adopting any habitual responses. We found that only the first response for each interval was strongly indicative of the internal timing of that interval, consistent with previous findings and a two-stage model. In addition, the temporal precision of the first response was comparable in the single-interval and concurrent-interval conditions, although the first saccade to the second interval tended to occur sooner than in the single-interval condition. Finally, behavioral responses during concurrent timing could be well accounted for by a race between two independent stochastic processes resembling those in the single-interval condition. The fact that monkeys can simultaneously monitor and respond to multiple temporal intervals indicates that the neural mechanisms for interval timing must be sufficiently flexible for concurrent timing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Perlman, Marc, und Carol L. Krumhansl. „An Experimental Study of Internal Interval Standards in Javanese and Western Musicians“. Music Perception 14, Nr. 2 (1996): 95–116. http://dx.doi.org/10.2307/40285714.

Der volle Inhalt der Quelle
Annotation:
Six Javanese and six Western musicians performed a magnitude-estimation task using 36 melodic intervals ranging from 60 to 760 cents at 20-cent increments. Several musicians displayed well-defined regions of confusion in which a range of intervals was assigned approximately equal magnitude estimates. The results suggest that these listeners assimilate the intervals to a set of internal interval standards. No evidence for assimilation was found for other musicians in both groups, some of whom made highly accurate estimates. For the Javanese musicians who showed assimilation to internal interval standards, the regions corresponded to the two Javanese tuning systems, slendro and pelog. For the Western musicians, the regions corresponded to the equal-tempered scale. The relatively wider regions of confusion for the Javanese musicians may reflect the greater variability of intonation in Java. In addition, the Javanese musicians seemed able to choose between internal interval standards based on the two tuning systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kahraman, Cengiz, Basar Oztaysi und Sezi Cevik Onar. „Interval-Valued Intuitionistic Fuzzy Confidence Intervals“. Journal of Intelligent Systems 28, Nr. 2 (24.04.2019): 307–19. http://dx.doi.org/10.1515/jisys-2017-0139.

Der volle Inhalt der Quelle
Annotation:
Abstract Confidence intervals are useful tools for statistical decision-making purposes. In case of incomplete and vague data, fuzzy confidence intervals can be used for decision making under uncertainty. In this paper, we develop interval-valued intuitionistic fuzzy (IVIF) confidence intervals for population mean, population proportion, differences in means of two populations, and differences in proportions of two populations. The developed IVIF intervals can be used in cases of both finite and infinite population sizes. The developed fuzzy confidence intervals are equivalent decision-making tools to fuzzy hypothesis tests. We apply the proposed confidence intervals to the differences in the mean lives and failure proportions of two types of radiators used in automobiles, and a sensitivity analysis is given to check the robustness of the decisions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Blokh, A. M. „On rotation intervals for interval maps“. Nonlinearity 7, Nr. 5 (01.09.1994): 1395–417. http://dx.doi.org/10.1088/0951-7715/7/5/008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

McClaskey, Carolyn M. „Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals“. Hearing Research 355 (November 2017): 64–69. http://dx.doi.org/10.1016/j.heares.2017.09.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cui, Yao, Changjun Liu, Nan Qiao, Siyu Qi, Xuanyi Chen, Pengyu Zhu und Yongneng Feng. „Characteristics of Acoustic Emission Caused by Intermittent Fatigue of Rock Salt“. Applied Sciences 12, Nr. 11 (29.05.2022): 5528. http://dx.doi.org/10.3390/app12115528.

Der volle Inhalt der Quelle
Annotation:
This paper compares classic (continuous) fatigue tests and fatigue tests carried out with time intervals of no stress in rock salt using a multifunctional testing machine and acoustic emission equipment. The results show that time intervals of no stress have a strong impact on the fatigue activity of rock salt. In fatigue tests with intervals, the residual strain in circles following an interval (α circles) is generally larger than that in circles before the intervals (β circles). The insertion of a time interval with no stress in the fatigue process accelerates the accumulation of residual strain: the longer the interval, the faster the residual strain accumulates during the fatigue process and the shorter the fatigue life of the rock salt. α circles produce a greater number of acoustic emission counts than β circles, which demonstrates that residual stress leads to internal structural adjustment of rock salt on a mesoscopic scale. During intervals of no stress, acoustic emission activity becomes more active in α circles because of reverse softening caused by the Bauschinger effect, which accelerates the accumulation of plastic deformation. A qualitative relationship between the accumulated damage variable and the time interval is established. A threshold in the duration of the time interval exists (around 900 s).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Repp, Bruno H., Hannah B. Mendlowitz und Michael J. Hove. „Does Rapid Auditory Stimulation Accelerate an Internal Pacemaker? Don’t Bet on It“. Timing & Time Perception 1, Nr. 1 (2013): 65–76. http://dx.doi.org/10.1163/22134468-00002001.

Der volle Inhalt der Quelle
Annotation:
Several interesting studies in the literature have demonstrated that a temporal interval coinciding with or following a rapid sequence of auditory stimuli is subjectively lengthened relative to a baseline interval without such rapid auditory stimulation (RAS). It has also been found that an interval preceding RAS is subjectively shortened. These effects have been attributed to acceleration of an internal pacemaker by RAS. The present study used musically trained participants in two experiments, similar to some reported in the literature. In Experiment 1, rapid chromatic scales preceded, followed, or intervened between two empty intervals that had to be compared. In Experiment 2, a series of comparison intervals, each preceded by a series of rapidly repeated tones, had to be compared to a memorized standard interval. Neither experiment yielded any effects of RAS relative to a control condition without RAS. These negative results raise questions about the conditions under which RAS affects interval judgment, and whether pacemaker acceleration is the correct explanation for these effects when they do occur.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bhattacharya, Sourav, und Alexander Blokh. „Over-rotation intervals of bimodal interval maps“. Journal of Difference Equations and Applications 26, Nr. 8 (17.02.2020): 1085–113. http://dx.doi.org/10.1080/10236198.2020.1725495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Interval"

1

Korzenowski, Heidi. „Estudo sobre resolucao de equacoes de coeficientes intervalares“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1994. http://hdl.handle.net/10183/25863.

Der volle Inhalt der Quelle
Annotation:
O objetivo deste trabalho e determinar a solução de algumas equações de coeficientes intervalares. Este estudo utiliza uma Teoria das Aproximações Intervalares, a qual foi descrita por [ACI91]. Nesta teoria a igualdade para intervalos e substituída pela relação de aproximação . Esta substituição deve-se ao fato da igualdade utilizada na Teoria Clássica dos Intervalos para resolução de equações de coeficientes intervalares não apresentar uma solução satisfatória, visto que a solução encontrada não contem todas as soluções das equações reais que compõe a equação intervalar. Pela substituição da igualdade intervalar por uma relação de aproximação é possível determinar a solução de equações de coeficientes intervalares, de maneira que esta solução contenha todas as possíveis soluções das equações reais pertencentes a equação intervalar. Apresenta-se alguns conceitos básicos, bem como analisa-se algumas propriedades no espaço solução ( /(R), +, •, C, 1). São representadas graficamente diferentes tipos de funções neste espaço intervalar, com os objetivos de obtenção da imagem, caracterização da solução e identificação gráfica da região de solução (ótima e externa), para cada tipo de função. Como a representação de intervalos de /(R) esta determinada num semiplano de eixos X - X+, onde X - representa o extremo inferior de cada intervalo e X+ representa o extremo superior dos intervalos, apresenta-se o espaço intervalar estendido /(R). Neste espaço intervalar estão definidos os intervalos não-regulares, representados no outro semi-piano de eixos X - X+ Em /(R) serão apresentados alguns conceitos fundamentais, assim como operações aritméticas e algumas considerações referentes aos intervalos não-regulares. No espaço intervalar /(R) e possível resolver equações de coeficientes intervalares de maneira análoga a resolução de equações reais no espaço real, pois este espaço intervalar possui a estrutura semelhante a de um corpo. Com isto apresenta-se a solução de equações de coeficientes intervalares lineares, obtida diretamente, assim como determina-se a Formula de Bascara Intervalar para resolução da Equação Quadrática Intervalar. Para funções que possuem grau maior que 2 apresenta-se alguns métodos iterativos intervalares, tais como o Método de Newton Intervalar, o Método da Secante Intervalar e o Método híbrido Intervalar, que permitem a obtenção do intervalo solução para funções intervalares. Por fim apresenta-se alguns conceitos básicos no espaço intervalar matricial M„,„(/(R)), bem como apresenta-se alguns métodos diretos para resolução de sistemas de equações lineares intervalares.
The aim of this work is to determine the solution set of some Equations of Interval Coefficients. The study use a Theory of Interval Approximation. The begining of this theory was described by [ACI91]. In this theory the equality for intervals is replaced by an approximation relation. When we make use of that relation to solve interval equations, it's possible to obtain an optimal solution, i.e., to get an interval solution that contain all of real solutions of the real equations envolved in the interval equation. By using the equality of Classical Interval Theory for solving interval equations we can not get an optimal solution, that is, the interval solution in the most of equations not consider some real solutions of real equations that belong to the interval equation. We present some basic concepts and analyse some properties at the interval space (1(R), E, -a x , 1). Different kind of functions are showed in this space in order to obtain the range, the solution caracterization and the graphic identification of the optimal and external solution region, for each kind of function. The representation of intervals in /(R) is determined in a half plane of axes X - , X+, where X - represent the lower endpoint and X+ represent the upper endpoint of the intervals. The nonregular intervals are defined in /(R), which are determined in an other half plane. In this interval space are presenting some specific concepts, as well as arithmetical operations and some remarks about nonregular intervals. The interval space (1(R), +, •, C, Ex , 1) have a similar structure to a field, so it's possible to solve interval coefficients equations analogously as to solve real equations in the real space. We present the solution of linear interval equations and we determine an interval formula to solve square interval equation. We present some intervals iterated methods for functions that have degree greater than 2 that allow to get an interval solution of interval functions. Finally we show some basic concepts about the interval matrix space Af,„„(IR)) and present direct methods for the resolution of linear interval sistems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Taga, Marcel Frederico de Lima. „Regressão linear com medidas censuradas“. Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05122008-005901/.

Der volle Inhalt der Quelle
Annotation:
Consideramos um modelo de regressão linear simples, em que tanto a variável resposta como a independente estão sujeitas a censura intervalar. Como motivação utilizamos um estudo em que o objetivo é avaliar a possibilidade de previsão dos resultados de um exame audiológico comportamental a partir dos resultados de um exame audiológico eletrofisiológico. Calculamos intervalos de previsão para a variável resposta, analisamos o comportamento dos estimadores de máxima verossimilhança obtidos sob o modelo proposto e comparamos seu desempenho com aquele de estimadores obtidos de um modelo de regressão linear simples usual, no qual a censura dos dados é desconsiderada.
We consider a simple linear regression model in which both variables are interval censored. To motivate the problem we use data from an audiometric study designed to evaluate the possibility of prediction of behavioral thresholds from physiological thresholds. We develop prediction intervals for the response variable, obtain the maximum likelihood estimators of the proposed model and compare their performance with that of estimators obtained under ordinary linear regression models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Holbig, Carlos Amaral. „Métodos intervalares para a resolução de sistemas de equações lineares“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1996. http://hdl.handle.net/10183/23432.

Der volle Inhalt der Quelle
Annotation:
O estudo dos métodos intervalares é importante para a resolução de sistemas de equações lineares, pois os métodos intervalares produzem resultados dentro de limites confiáveis (do intervalo solução) e provam a existência ou não existência de soluções, portanto produzem resultados confiáveis, o que os métodos pontuais podem não proporcionar. Outro aspecto a destacar é o campo de utilizando de sistemas de equações lineares em problemas das engenharias e outras ciências, o que mostra a aplicabilidade desses métodos e por conseguinte a necessidade de elaboração de ferramentas que possibilitem a implementação desses métodos intervalares. O objetivo deste trabalho não é a elaboração de novos métodos intervalares, mas sim o de realizar uma descrição e implementação de alguns dos métodos intervalares encontrados na bibliografia pesquisada. A versão intervalar dos métodos pontuais não é simples e o calculo por métodos intervalares pode ser dispendioso, uma vez que se está tratando com vetores e matrizes de intervalos. A implementação dos métodos intervalares são foi possível graças a existência de ferramentas, como o compilador Pascal-XSC, que incorpora as suas características aspectos importantes como a aritmética intervalar, a verificação automática do resultado, o produto escalar Ótimo e a aritmética de alta exatidão. Este trabalho é dividido em duas etapas. A primeira apresenta um estudo dos métodos intervalares para a resolução de sistemas de equações lineares. São caracterizadas as metodologias de desenvolvimento desses métodos. Metodologias estas, que foram divididas em três grupos de métodos: métodos intervalares baseados em operações algébricas intervalares ou métodos diretos, métodos intervalares baseados em refinamento ou métodos híbridos e métodos intervalares baseados em interacões. São definidas as características, os métodos que as compõe e a aplicabilidade desses métodos na resolução de sistemas de equações lineares. A segunda etapa é caracterizada pela elaboração dos algoritmos referentes aos métodos intervalares estudados e sua respectiva implementação, dando origem a uma biblioteca aplicativa intervalar para a resolução de sistemas de equações lineares, implementada no PC-486 e utilizando o compilador Pascal-XSC. Para este desenvolvimento foi realizado, previamente, um estudo sobre este compilador e sobre bibliotecas disponíveis que são utilizadas na implementação da biblioteca aplicativa intervalar. A biblioteca selintp é organizada em quatro módulos: o módulo dirint (referente aos métodos diretos); o modulo refint (referente aos métodos baseados em refinamento); o módulo itrint (referente aos métodos iterativos) e o modulo equalg (para sistemas de equações de ordem 1). Por fim, através daquela biblioteca foram realizadas comparações entre os resultados obtidos (resultados pontuais, intervalares, seqüenciais e vetoriais) a rim de se realizar uma analise de desempenho quantitativa (exatidão) e uma comparação entre os resultados obtidos. Esses resultados sendo comparados com os obtidos com a biblioteca biblioteca esta que esta sendo desenvolvida para o ambiente do supercomputador Cray Y-MP do CESUP/UFRGS, como parte do projeto de Aritmética Vetorial Intervalar do Grupo de Matemática Computacional da UFRGS.
The study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Villanueva, Fabiola Roxana. „Contributions in interval optimization and interval optimal control /“. São José do Rio Preto, 2020. http://hdl.handle.net/11449/192795.

Der volle Inhalt der Quelle
Annotation:
Orientador: Valeriano Antunes de Oliveira
Resumo: Neste trabalho, primeiramente, serão apresentados problemas de otimização nos quais a função objetivo é de múltiplas variáveis e de valor intervalar e as restrições de desigualdade são dadas por funcionais clássicos, isto é, de valor real. Serão dadas as condições de otimalidade usando a E−diferenciabilidade e, depois, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade usando a gH−diferenciabilidade total são do tipo KKT e as suficientes são do tipo de convexidade generalizada. Em seguida, serão estabelecidos problemas de controle ótimo nos quais a funçãao objetivo também é com valor intervalar de múltiplas variáveis e as restrições estão na forma de desigualdades e igualdades clássicas. Serão fornecidas as condições de otimalidade usando o conceito de Lipschitz para funções intervalares de várias variáveis e, logo, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade, usando a gH−diferenciabilidade total, estão na forma do célebre Princípio do Máximo de Pontryagin, mas desta vez na versão intervalar.
Abstract: In this work, firstly, it will be presented optimization problems in which the objective function is interval−valued of multiple variables and the inequality constraints are given by classical functionals, that is, real−valued ones. It will be given the optimality conditions using the E−differentiability and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability are of KKT−type and the sufficient ones are of generalized convexity type. Next, it will be established optimal control problems in which the objective function is also interval−valued of multiple variables and the constraints are in the form of classical inequalities and equalities. It will be furnished the optimality conditions using the Lipschitz concept for interval−valued functions of several variables and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability is in the form of the celebrated local Pontryagin Maximum Principle, but this time in the intervalar version.
Doutor
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yang, Joyce C. „Interval Graphs“. Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/83.

Der volle Inhalt der Quelle
Annotation:
We examine the problem of counting interval graphs. We answer the question posed by Hanlon, of whether the formal power series generating function of the number of interval graphs on n vertices has a positive radius of convergence. We have found that it is zero. We have obtained a lower bound and an upper bound on the number of interval graphs on n vertices. We also study the application of interval graphs to the dynamic storage allocation problem. Dynamic storage allocation has been shown to be NP-complete by Stockmeyer. Coloring interval graphs on-line has applications to dynamic storage allocation. The most colors used by Kierstead's algorithm is 3 ω -2, where ω is the size of the largest clique in the graph. We determine a lower bound on the colors used. One such lower bound is 2 ω -1.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Franciosi, Beatriz Regina Tavares. „Representação geométrica de intervalos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1999. http://hdl.handle.net/10183/17751.

Der volle Inhalt der Quelle
Annotation:
Neste trabalho e apresentada uma nova abordagem para a representação gráfica de intervalos. Segundo esta abordagem é possível realizar a análise visual de intervalos a partir da associação entre propriedades geométricas do piano cartesiano e de conjuntos de intervalos representados como pontos desse piano. Esta nova abordagem possibilita a representação da interpretação dual de intervalos, assim como a analise visual de relacionamentos em (IR, <=) e (IR, C). Neste contexto, a representação gráfica do conjunto de intervalos degenerados, representado pela reta y = x, constitui um caso especial desta representação,"o. Por sua vez, a relação (IR, representada pelo semiplano superior a reta y = x, denotado piano IR. A interpretação visual de operações intervalares é obtida diretamente através da aplicação da representação gráfica proposta. Além disto, operandos e operadores podem ser estudados diretamente a partir desta representação. Foram desenvolvidos experimentos de analise visual de intervalos utilizando a abordagem proposta e resultados bastante promissores foram obtidos. Estes experimentos possibilitaram a identificação de novas propriedades de intervalos assim como interpretações não usuais para operações intervalares. Esta representação pode ser utilizada também para observar o comportamento de seqüências de intervalos gerados a partir de programas baseado na aplicação da aritmética intervalar. Nesta caso, pode ser observado como os intervalos desta seqüência variam com relação ao seu ponto médio e o raio, assim como a relação entre eles. Esta representação foi utilizada com sucesso para obter a solução geométrica da equação intervalar afim e efetuando sua validação. Finalmente, analisamos a contribuição efetiva deste trabalho no contexto da aritmética intervalar.
This thesis presents a framework enabling the visual analysis of intervals, obtained by mapping geometric properties of the cartesian plane into interval sets to obtain a graphical representation. This new approach makes possible a dual interval representation and the immediate visual analysis of several relationships in (IR, <=) and (IR, C). In this sense, the set of degenerated intervals is a special case of this approach as they are represented by the straight line y=x. In turn, the order relation in (IR, C) is represented through the half-plane above the straight line y = x, denoted IR plane. Applying this framework, the visual interpretation of most interval operations is obtained directly from the graphical representation of the operands and the operations being studied. On the other hand, some experiments on interval visual analysis were developed with good final results. Thus, new properties and unusual interpretations for known operations can be developed with rather small effort. Moreover, this representation can be easily embedded into a running algorithm, to observe convergence and behavior of interval iterations, as one can easily see how intervals change with respect to midpoint and radius, as well as with respect to each other. The validation of this new approach was carried through the geometric solution of linear interval equations. This result was analyzed in order to verify the effective contribution of this geometrical representation in the context of interval arithmetic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Santana, Fabiana Trist?o de. „Uma fundamenta??o para sinais e sistemas intervalares“. Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15158.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2014-12-17T14:54:59Z (GMT). No. of bitstreams: 1 FabianaTS_TESE.pdf: 1364206 bytes, checksum: 5e147adc9ca5829c7a40ed214ab434d2 (MD5) Previous issue date: 2011-12-02
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Neste trabalho utiliza-se a matem?tica intervalar para estabelecer os conceitos intervalares das principais ferramentas utilizadas em processamento digital de sinais. Mais especificamente, foram desenvolvidos aqui as abordagens intervalares para sinais, sistemas, amostragem, quantiza??o, codifica??o, transformada Z e transformada de Fourier. ? feito um estudo de algumas aritm?ticas que lidam com n?meros complexos sujeitos ? imprecis?es, tais como: aritm?tica complexa intervalar (ou retangular), aritm?tica complexa circular, aritm?tica setorial e aritm?tica intervalar polar. A partir da?, investiga-se algumas propriedades que ser?o relevantes para o desenvolvimento e aplica??o no processamento de sinais discretos intervalares. Mostra-se que nos conjuntos IR e R(C), seja qual for a aritm?tica correta adotada, n?o se tem um corpo, isto ?, os elementos desses conjuntos n?o se comportam como os n?meros reais ou complexos com suas aritm?ticas cl?ssicas e que isso ir? requerer uma avalia??o matem?tica dos conceitos necess?rios ? teoria de sinais e a rela??o desses com as aritm?ticas intervalares. Tamb?m tanto ? introduzido o conceito de amplitude intervalar complexa, como alternativa ? defini??o cl?ssica quanto utiliza-se a ordem de Kulisch-Miranker para n?meros complexos afim de que se escreva n?meros complexos intervalares na forma de intervalos, o que torna poss?vel as opera??es atrav?s dos extremos. Essa rela??o ? utilizada em propriedades de somas de intervalos de n?meros complexos. O uso de sinais e sistemas intervalares foi motivado pela representa??o intervalar num sistema de ponto flutuante abstrato. Isto ?, se um n?mero x 2 R n?o ? represent?vel em um sistema de ponto flutuante F, ele ? mapeado para um intervalo [x;x], tal que x ? o maior dos n?meros menores que x represent?vel em F e x ? o menor dos n?meros maiores que x represent?vel em F. A representa??o intervalar ? importante em processamento digital de sinais, pois a imprecis?o em dados ocorre tanto no momento da medi??o de determinado sinal, quanto no momento de process?-los computacionalmente. A partir da?, define-se sinais e sistemas intervalares que assumem tanto valores reais quanto complexos. Para isso, utiliza-se o estudo feito a respeito das aritm?ticas complexas intervalares e mostram-se algumas propriedades dos sistemas intervalares, tais como: causalidade, estabilidade, invari?ncia no tempo, homogeneidade, aditividade e linearidade. Al?m disso, foi definida a representa??o intervalar de fun??es complexas. Tal fun??o estende sistemas cl?ssicos a sistemas intervalares preservando as principais propriedades. Um conceito muito importante no processamento digital de sinais ? a quantiza??o, uma vez que a maioria dos sinais ? de natureza cont?nua e para process?-los ? necess?rio convert?-los em sinais discretos. Aqui, este processo ? descrito detalhadamente com o uso da matem?tica intervalar, onde se prop?em, inicialmente, uma amostragem intervalar utilizando as id?ias de representa??o no sistema de ponto flutuante. Posteriormente, s?o definidos n?veis de quantiza??o intervalares e, a partir da?, ? descrito o processo para se obter o sinal quantizado intervalar e s?o definidos o erro de quantiza??o intervalar e o sinal codificado intervalar. ? mostrado que os n?veis de quantiza??o intervalares representam os n?veis de quantiza??o cl?ssicos e o erro de quantiza??o intervalar representa o e erro de quantiza??o cl?ssico. Uma estimativa para o erro de quantiza??o intervalar ? apresentada. Utilizando a aritm?tica retangular e as defini??es e propriedades de sinais e sistemas intervalares, ? introduzida a transformada Z intervalar e s?o analisadas as condi??es de converg?ncia e as principais propriedades. Em particular, quando a vari?vel complexa z ? unit?ria, define-se a transformada de Fourier intervalar para sinais discretos no tempo, al?m de suas propriedades. Por fim, foram apresentadas as implementa??es dos resultados que foram feitas no software Matlab
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alparslan, Gok Sirma Zeynep. „Cooperative Interval Games“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610337/index.pdf.

Der volle Inhalt der Quelle
Annotation:
Interval uncertainty affects our decision making activities on a daily basis making the data structure of intervals of real numbers more and more popular in theoretical models and related software applications. Natural questions for people or businesses that face interval uncertainty in their data when dealing with cooperation are how to form the coalitions and how to distribute the collective gains or costs. The theory of cooperative interval games is a suitable tool for answering these questions. In this thesis, the classical theory of cooperative games is extended to cooperative interval games. First, basic notions and facts from classical cooperative game theory and interval calculus are given. Then, the model of cooperative interval games is introduced and basic definitions are given. Solution concepts of selection-type and interval-type for cooperative interval games are intensively studied. Further, special classes of cooperative interval games like convex interval games and big boss interval games are introduced and various characterizations are given. Some economic and Operations Research situations such as airport, bankruptcy and sequencing with interval data and related interval games have been also studied. Finally, some algorithmic aspects related with the interval Shapley value and the interval core are considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sainudiin, R. „Machine Interval Experiments“. Thesis, University of Canterbury. Mathematics and Statistics, 2005. http://hdl.handle.net/10092/2833.

Der volle Inhalt der Quelle
Annotation:
A statistical experiment is a mathematical object that provides a framework for statistical inference, including hypothesis testing and parameter estimation, from observations of an empirical phenomenon. When observations in the continuum of real numbers are not empirically measurable to infinite precision and when conventional floating-point computations used in the inference procedure are not exact, the statistical experiment can become epistemologically invalid. The family of measures of the conventional statistical experiment indexed by a compact finite dimensional continuum is extended to the complete metric space of all compact subsets (of a certain form) of the index set. This is accomplished by the natural interval extension of the likelihood function. The extended experiment allows a statistical decision made with the aid of a computer to be equivalent to a numerical proof of its global optimality. Three open problems in computational statistics were solved using the extended experiment: (1) parametric bootstraps of likelihood ratio test statistics for finite mixture models, (2) rigorous maximum likelihood estimates of the branch lengths of a phylogenetic tree with a fixed topology or shape and (3) Monte Carlo sampling from a multi-modal target density with sharp peaks or witches’ hats.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Alshammery, Hafiz Jaman 1971. „Interval attenuation estimation“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9877.

Der volle Inhalt der Quelle
Annotation:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1998.
Includes bibliographical references (leaves 55-56).
by Hafiz Jaman Alshammery.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Interval"

1

Stavinoha, Jan. Interval. Amsterdam: Van Oorschot, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Clief-Stefanon, Lyrae Van. Open interval. Pittsburgh: University of Pittsburgh Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Florentin, Smarandache, und Chetry Moon Kumar, Hrsg. Interval groupoids. Ann Arbor: Infolearnquest, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mirigan, David. Interval studies. Hayward,CA: Fivenote Music Publishing, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Snepp, Frank. Decent interval. Aldbourne: Orbis, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Open interval. Pittsburgh: University of Pittsburgh Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cinema interval. New York: Routledge, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cissik, John. Maximum interval training. Champaign, IL: Human Kinetics, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Interval in Africa. Canterbury, Conn: Protea Pub. Co., 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Roceric, Alexandra. Interval: Opal, ocean. Washington D.C: Moonfall Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Interval"

1

Krawczyk, R. „Interval operators and fixed intervals“. In Interval Mathematics 1985, 81–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16437-5_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gooch, Jan W. „Interval“. In Encyclopedic Dictionary of Polymers, 984. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15261.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weik, Martin H. „interval“. In Computer Science and Communications Dictionary, 831. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_9524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bolles, Dylan, und Peter Lichtenfels. „Interval“. In Performance Studies, 57–64. London: Macmillan Education UK, 2014. http://dx.doi.org/10.1007/978-1-137-46315-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Koncilia, Christian, Tadeusz Morzy, Robert Wrembel und Johann Eder. „Interval OLAP: Analyzing Interval Data“. In Data Warehousing and Knowledge Discovery, 233–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10160-6_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Skalna, Iwona. „Interval and Parametric Interval Matrices“. In Parametric Interval Algebraic Systems, 51–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75187-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pontius, Robert Gilmore. „Interval Variable Versus Interval Variable“. In Advances in Geographic Information Science, 71–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-70765-1_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Böhmová, Kateřina, Yann Disser, Matúš Mihalák und Peter Widmayer. „Interval Selection with Machine-Dependent Intervals“. In Lecture Notes in Computer Science, 170–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40104-6_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mudelsee, Manfred. „Bootstrap Confidence Intervals Confidence interval,Bootstrap“. In Atmospheric and Oceanographic Sciences Library, 61–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04450-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Biasi, Glenn. „Recurrence Interval“. In Encyclopedia of Natural Hazards, 824–25. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-4399-4_286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Interval"

1

Trudel, André. „Interval Algebra Networks with Infinite Intervals“. In 2009 16th International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2009. http://dx.doi.org/10.1109/time.2009.20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Roman-Flores, Heriberto, und Yurilev Chalco-Cano. „Transitivity of interval and fuzzy-interval extensions of interval functions“. In 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ifsa-eusflat-15.2015.203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yao, Yiyu. „Interval sets and interval-set algebras“. In 2009 8th IEEE International Conference on Cognitive Informatics (ICCI). IEEE, 2009. http://dx.doi.org/10.1109/coginf.2009.5250723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kwon, Junseok, und Kyoung Mu Lee. „Interval Tracker: Tracking by Interval Analysis“. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.447.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Xiu-hai. „Interval Cloud Model and Interval Cloud Generator“. In 2010 Second Global Congress on Intelligent Systems (GCIS). IEEE, 2010. http://dx.doi.org/10.1109/gcis.2010.174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chuang, Chen-Chia, Chin-Wen Li, Chih-Ching Hsiao, Shun-Feng Su und Jin-Tsong Jeng. „Robust interval support vector interval regression networks for interval-valued data with outliers“. In 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). IEEE, 2014. http://dx.doi.org/10.1109/scis-isis.2014.7044510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pinhanez, Claudio S., Kenji Mase und Aaron Bobick. „Interval scripts“. In the SIGCHI conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258549.258758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Peschlow, Patrick, Peter Martini und Jason Liu. „Interval Branching“. In 2008 ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation ( PADS). IEEE, 2008. http://dx.doi.org/10.1109/pads.2008.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chou, Pai, und Gaetano Borriello. „Interval scheduling“. In the 32nd ACM/IEEE conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/217474.217571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mockus, Audris, und David Weiss. „Interval quality“. In the 13th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1368088.1368190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Interval"

1

Chiaro, P. J. Jr. Calibration interval technical basis document. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/304106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

ABDURRAHAM, N. M. Interval estimation for statistical control. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/808232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Thompson, Andrew A. Interval Scales From Paired Comparisons. Fort Belvoir, VA: Defense Technical Information Center, Mai 2012. http://dx.doi.org/10.21236/ada568737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

S. Kuzio. Probability Distribution for Flowing Interval Spacing. Office of Scientific and Technical Information (OSTI), Mai 2001. http://dx.doi.org/10.2172/837138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

S. Kuzio. Probability Distribution for Flowing Interval Spacing. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/838653.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Loui, Ronald, Jerome Feldman, Henry Kyburg und Jr. Interval-Based Decisions for Reasoning Systems. Fort Belvoir, VA: Defense Technical Information Center, Januar 1989. http://dx.doi.org/10.21236/ada250540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

McAllester, David A., Pascal Van Hentenryck und Deepak Kapur. Three Cuts for Accelerated Interval Propagation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1995. http://dx.doi.org/10.21236/ada298215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Parks, A. D. Interval Graphs and Hypergraph Acyclicity Degree. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada241458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Morozov. METHOD OF INTERVAL EXOGENOUS RESPIRATORY HYPOXIC TRAINING. Federal State Budgetary Educational Establishment of Higher Vocational Education "Povolzhskaya State Academy of Physical Culture, Sports and Tourism" Naberezhnye Chelny, Dezember 2013. http://dx.doi.org/10.14526/42_2013_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Malkin, G., und A. Harkin. TFTP Timeout Interval and Transfer Size Options. RFC Editor, März 1995. http://dx.doi.org/10.17487/rfc1784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie