Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interval“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interval" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interval"
Rohn, Jiří. „Interval solutions of linear interval equations“. Applications of Mathematics 35, Nr. 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.
Der volle Inhalt der QuelleLodwick, Weldon A., und Oscar A. Jenkins. „Constrained intervals and interval spaces“. Soft Computing 17, Nr. 8 (19.02.2013): 1393–402. http://dx.doi.org/10.1007/s00500-013-1006-x.
Der volle Inhalt der QuelleKleinman, Matthew R., Hansem Sohn und Daeyeol Lee. „A two-stage model of concurrent interval timing in monkeys“. Journal of Neurophysiology 116, Nr. 3 (01.09.2016): 1068–81. http://dx.doi.org/10.1152/jn.00375.2016.
Der volle Inhalt der QuellePerlman, Marc, und Carol L. Krumhansl. „An Experimental Study of Internal Interval Standards in Javanese and Western Musicians“. Music Perception 14, Nr. 2 (1996): 95–116. http://dx.doi.org/10.2307/40285714.
Der volle Inhalt der QuelleKahraman, Cengiz, Basar Oztaysi und Sezi Cevik Onar. „Interval-Valued Intuitionistic Fuzzy Confidence Intervals“. Journal of Intelligent Systems 28, Nr. 2 (24.04.2019): 307–19. http://dx.doi.org/10.1515/jisys-2017-0139.
Der volle Inhalt der QuelleBlokh, A. M. „On rotation intervals for interval maps“. Nonlinearity 7, Nr. 5 (01.09.1994): 1395–417. http://dx.doi.org/10.1088/0951-7715/7/5/008.
Der volle Inhalt der QuelleMcClaskey, Carolyn M. „Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals“. Hearing Research 355 (November 2017): 64–69. http://dx.doi.org/10.1016/j.heares.2017.09.008.
Der volle Inhalt der QuelleCui, Yao, Changjun Liu, Nan Qiao, Siyu Qi, Xuanyi Chen, Pengyu Zhu und Yongneng Feng. „Characteristics of Acoustic Emission Caused by Intermittent Fatigue of Rock Salt“. Applied Sciences 12, Nr. 11 (29.05.2022): 5528. http://dx.doi.org/10.3390/app12115528.
Der volle Inhalt der QuelleRepp, Bruno H., Hannah B. Mendlowitz und Michael J. Hove. „Does Rapid Auditory Stimulation Accelerate an Internal Pacemaker? Don’t Bet on It“. Timing & Time Perception 1, Nr. 1 (2013): 65–76. http://dx.doi.org/10.1163/22134468-00002001.
Der volle Inhalt der QuelleBhattacharya, Sourav, und Alexander Blokh. „Over-rotation intervals of bimodal interval maps“. Journal of Difference Equations and Applications 26, Nr. 8 (17.02.2020): 1085–113. http://dx.doi.org/10.1080/10236198.2020.1725495.
Der volle Inhalt der QuelleDissertationen zum Thema "Interval"
Korzenowski, Heidi. „Estudo sobre resolucao de equacoes de coeficientes intervalares“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1994. http://hdl.handle.net/10183/25863.
Der volle Inhalt der QuelleThe aim of this work is to determine the solution set of some Equations of Interval Coefficients. The study use a Theory of Interval Approximation. The begining of this theory was described by [ACI91]. In this theory the equality for intervals is replaced by an approximation relation. When we make use of that relation to solve interval equations, it's possible to obtain an optimal solution, i.e., to get an interval solution that contain all of real solutions of the real equations envolved in the interval equation. By using the equality of Classical Interval Theory for solving interval equations we can not get an optimal solution, that is, the interval solution in the most of equations not consider some real solutions of real equations that belong to the interval equation. We present some basic concepts and analyse some properties at the interval space (1(R), E, -a x , 1). Different kind of functions are showed in this space in order to obtain the range, the solution caracterization and the graphic identification of the optimal and external solution region, for each kind of function. The representation of intervals in /(R) is determined in a half plane of axes X - , X+, where X - represent the lower endpoint and X+ represent the upper endpoint of the intervals. The nonregular intervals are defined in /(R), which are determined in an other half plane. In this interval space are presenting some specific concepts, as well as arithmetical operations and some remarks about nonregular intervals. The interval space (1(R), +, •, C, Ex , 1) have a similar structure to a field, so it's possible to solve interval coefficients equations analogously as to solve real equations in the real space. We present the solution of linear interval equations and we determine an interval formula to solve square interval equation. We present some intervals iterated methods for functions that have degree greater than 2 that allow to get an interval solution of interval functions. Finally we show some basic concepts about the interval matrix space Af,„„(IR)) and present direct methods for the resolution of linear interval sistems.
Taga, Marcel Frederico de Lima. „Regressão linear com medidas censuradas“. Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05122008-005901/.
Der volle Inhalt der QuelleWe consider a simple linear regression model in which both variables are interval censored. To motivate the problem we use data from an audiometric study designed to evaluate the possibility of prediction of behavioral thresholds from physiological thresholds. We develop prediction intervals for the response variable, obtain the maximum likelihood estimators of the proposed model and compare their performance with that of estimators obtained under ordinary linear regression models.
Holbig, Carlos Amaral. „Métodos intervalares para a resolução de sistemas de equações lineares“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1996. http://hdl.handle.net/10183/23432.
Der volle Inhalt der QuelleThe study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
Villanueva, Fabiola Roxana. „Contributions in interval optimization and interval optimal control /“. São José do Rio Preto, 2020. http://hdl.handle.net/11449/192795.
Der volle Inhalt der QuelleResumo: Neste trabalho, primeiramente, serão apresentados problemas de otimização nos quais a função objetivo é de múltiplas variáveis e de valor intervalar e as restrições de desigualdade são dadas por funcionais clássicos, isto é, de valor real. Serão dadas as condições de otimalidade usando a E−diferenciabilidade e, depois, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade usando a gH−diferenciabilidade total são do tipo KKT e as suficientes são do tipo de convexidade generalizada. Em seguida, serão estabelecidos problemas de controle ótimo nos quais a funçãao objetivo também é com valor intervalar de múltiplas variáveis e as restrições estão na forma de desigualdades e igualdades clássicas. Serão fornecidas as condições de otimalidade usando o conceito de Lipschitz para funções intervalares de várias variáveis e, logo, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade, usando a gH−diferenciabilidade total, estão na forma do célebre Princípio do Máximo de Pontryagin, mas desta vez na versão intervalar.
Abstract: In this work, firstly, it will be presented optimization problems in which the objective function is interval−valued of multiple variables and the inequality constraints are given by classical functionals, that is, real−valued ones. It will be given the optimality conditions using the E−differentiability and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability are of KKT−type and the sufficient ones are of generalized convexity type. Next, it will be established optimal control problems in which the objective function is also interval−valued of multiple variables and the constraints are in the form of classical inequalities and equalities. It will be furnished the optimality conditions using the Lipschitz concept for interval−valued functions of several variables and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability is in the form of the celebrated local Pontryagin Maximum Principle, but this time in the intervalar version.
Doutor
Yang, Joyce C. „Interval Graphs“. Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/83.
Der volle Inhalt der QuelleFranciosi, Beatriz Regina Tavares. „Representação geométrica de intervalos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1999. http://hdl.handle.net/10183/17751.
Der volle Inhalt der QuelleThis thesis presents a framework enabling the visual analysis of intervals, obtained by mapping geometric properties of the cartesian plane into interval sets to obtain a graphical representation. This new approach makes possible a dual interval representation and the immediate visual analysis of several relationships in (IR, <=) and (IR, C). In this sense, the set of degenerated intervals is a special case of this approach as they are represented by the straight line y=x. In turn, the order relation in (IR, C) is represented through the half-plane above the straight line y = x, denoted IR plane. Applying this framework, the visual interpretation of most interval operations is obtained directly from the graphical representation of the operands and the operations being studied. On the other hand, some experiments on interval visual analysis were developed with good final results. Thus, new properties and unusual interpretations for known operations can be developed with rather small effort. Moreover, this representation can be easily embedded into a running algorithm, to observe convergence and behavior of interval iterations, as one can easily see how intervals change with respect to midpoint and radius, as well as with respect to each other. The validation of this new approach was carried through the geometric solution of linear interval equations. This result was analyzed in order to verify the effective contribution of this geometrical representation in the context of interval arithmetic.
Santana, Fabiana Trist?o de. „Uma fundamenta??o para sinais e sistemas intervalares“. Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15158.
Der volle Inhalt der QuelleCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Neste trabalho utiliza-se a matem?tica intervalar para estabelecer os conceitos intervalares das principais ferramentas utilizadas em processamento digital de sinais. Mais especificamente, foram desenvolvidos aqui as abordagens intervalares para sinais, sistemas, amostragem, quantiza??o, codifica??o, transformada Z e transformada de Fourier. ? feito um estudo de algumas aritm?ticas que lidam com n?meros complexos sujeitos ? imprecis?es, tais como: aritm?tica complexa intervalar (ou retangular), aritm?tica complexa circular, aritm?tica setorial e aritm?tica intervalar polar. A partir da?, investiga-se algumas propriedades que ser?o relevantes para o desenvolvimento e aplica??o no processamento de sinais discretos intervalares. Mostra-se que nos conjuntos IR e R(C), seja qual for a aritm?tica correta adotada, n?o se tem um corpo, isto ?, os elementos desses conjuntos n?o se comportam como os n?meros reais ou complexos com suas aritm?ticas cl?ssicas e que isso ir? requerer uma avalia??o matem?tica dos conceitos necess?rios ? teoria de sinais e a rela??o desses com as aritm?ticas intervalares. Tamb?m tanto ? introduzido o conceito de amplitude intervalar complexa, como alternativa ? defini??o cl?ssica quanto utiliza-se a ordem de Kulisch-Miranker para n?meros complexos afim de que se escreva n?meros complexos intervalares na forma de intervalos, o que torna poss?vel as opera??es atrav?s dos extremos. Essa rela??o ? utilizada em propriedades de somas de intervalos de n?meros complexos. O uso de sinais e sistemas intervalares foi motivado pela representa??o intervalar num sistema de ponto flutuante abstrato. Isto ?, se um n?mero x 2 R n?o ? represent?vel em um sistema de ponto flutuante F, ele ? mapeado para um intervalo [x;x], tal que x ? o maior dos n?meros menores que x represent?vel em F e x ? o menor dos n?meros maiores que x represent?vel em F. A representa??o intervalar ? importante em processamento digital de sinais, pois a imprecis?o em dados ocorre tanto no momento da medi??o de determinado sinal, quanto no momento de process?-los computacionalmente. A partir da?, define-se sinais e sistemas intervalares que assumem tanto valores reais quanto complexos. Para isso, utiliza-se o estudo feito a respeito das aritm?ticas complexas intervalares e mostram-se algumas propriedades dos sistemas intervalares, tais como: causalidade, estabilidade, invari?ncia no tempo, homogeneidade, aditividade e linearidade. Al?m disso, foi definida a representa??o intervalar de fun??es complexas. Tal fun??o estende sistemas cl?ssicos a sistemas intervalares preservando as principais propriedades. Um conceito muito importante no processamento digital de sinais ? a quantiza??o, uma vez que a maioria dos sinais ? de natureza cont?nua e para process?-los ? necess?rio convert?-los em sinais discretos. Aqui, este processo ? descrito detalhadamente com o uso da matem?tica intervalar, onde se prop?em, inicialmente, uma amostragem intervalar utilizando as id?ias de representa??o no sistema de ponto flutuante. Posteriormente, s?o definidos n?veis de quantiza??o intervalares e, a partir da?, ? descrito o processo para se obter o sinal quantizado intervalar e s?o definidos o erro de quantiza??o intervalar e o sinal codificado intervalar. ? mostrado que os n?veis de quantiza??o intervalares representam os n?veis de quantiza??o cl?ssicos e o erro de quantiza??o intervalar representa o e erro de quantiza??o cl?ssico. Uma estimativa para o erro de quantiza??o intervalar ? apresentada. Utilizando a aritm?tica retangular e as defini??es e propriedades de sinais e sistemas intervalares, ? introduzida a transformada Z intervalar e s?o analisadas as condi??es de converg?ncia e as principais propriedades. Em particular, quando a vari?vel complexa z ? unit?ria, define-se a transformada de Fourier intervalar para sinais discretos no tempo, al?m de suas propriedades. Por fim, foram apresentadas as implementa??es dos resultados que foram feitas no software Matlab
Alparslan, Gok Sirma Zeynep. „Cooperative Interval Games“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610337/index.pdf.
Der volle Inhalt der QuelleSainudiin, R. „Machine Interval Experiments“. Thesis, University of Canterbury. Mathematics and Statistics, 2005. http://hdl.handle.net/10092/2833.
Der volle Inhalt der QuelleAlshammery, Hafiz Jaman 1971. „Interval attenuation estimation“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9877.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 55-56).
by Hafiz Jaman Alshammery.
S.M.
Bücher zum Thema "Interval"
Stavinoha, Jan. Interval. Amsterdam: Van Oorschot, 1987.
Den vollen Inhalt der Quelle findenClief-Stefanon, Lyrae Van. Open interval. Pittsburgh: University of Pittsburgh Press, 2009.
Den vollen Inhalt der Quelle findenFlorentin, Smarandache, und Chetry Moon Kumar, Hrsg. Interval groupoids. Ann Arbor: Infolearnquest, 2010.
Den vollen Inhalt der Quelle findenMirigan, David. Interval studies. Hayward,CA: Fivenote Music Publishing, 1990.
Den vollen Inhalt der Quelle findenSnepp, Frank. Decent interval. Aldbourne: Orbis, 1988.
Den vollen Inhalt der Quelle findenOpen interval. Pittsburgh: University of Pittsburgh Press, 2009.
Den vollen Inhalt der Quelle findenCinema interval. New York: Routledge, 1999.
Den vollen Inhalt der Quelle findenCissik, John. Maximum interval training. Champaign, IL: Human Kinetics, 2015.
Den vollen Inhalt der Quelle findenInterval in Africa. Canterbury, Conn: Protea Pub. Co., 1988.
Den vollen Inhalt der Quelle findenRoceric, Alexandra. Interval: Opal, ocean. Washington D.C: Moonfall Press, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Interval"
Krawczyk, R. „Interval operators and fixed intervals“. In Interval Mathematics 1985, 81–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16437-5_8.
Der volle Inhalt der QuelleGooch, Jan W. „Interval“. In Encyclopedic Dictionary of Polymers, 984. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15261.
Der volle Inhalt der QuelleWeik, Martin H. „interval“. In Computer Science and Communications Dictionary, 831. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_9524.
Der volle Inhalt der QuelleBolles, Dylan, und Peter Lichtenfels. „Interval“. In Performance Studies, 57–64. London: Macmillan Education UK, 2014. http://dx.doi.org/10.1007/978-1-137-46315-9_7.
Der volle Inhalt der QuelleKoncilia, Christian, Tadeusz Morzy, Robert Wrembel und Johann Eder. „Interval OLAP: Analyzing Interval Data“. In Data Warehousing and Knowledge Discovery, 233–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10160-6_21.
Der volle Inhalt der QuelleSkalna, Iwona. „Interval and Parametric Interval Matrices“. In Parametric Interval Algebraic Systems, 51–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75187-0_3.
Der volle Inhalt der QuellePontius, Robert Gilmore. „Interval Variable Versus Interval Variable“. In Advances in Geographic Information Science, 71–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-70765-1_8.
Der volle Inhalt der QuelleBöhmová, Kateřina, Yann Disser, Matúš Mihalák und Peter Widmayer. „Interval Selection with Machine-Dependent Intervals“. In Lecture Notes in Computer Science, 170–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40104-6_15.
Der volle Inhalt der QuelleMudelsee, Manfred. „Bootstrap Confidence Intervals Confidence interval,Bootstrap“. In Atmospheric and Oceanographic Sciences Library, 61–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04450-7_3.
Der volle Inhalt der QuelleBiasi, Glenn. „Recurrence Interval“. In Encyclopedia of Natural Hazards, 824–25. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-4399-4_286.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interval"
Trudel, André. „Interval Algebra Networks with Infinite Intervals“. In 2009 16th International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2009. http://dx.doi.org/10.1109/time.2009.20.
Der volle Inhalt der QuelleRoman-Flores, Heriberto, und Yurilev Chalco-Cano. „Transitivity of interval and fuzzy-interval extensions of interval functions“. In 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ifsa-eusflat-15.2015.203.
Der volle Inhalt der QuelleYao, Yiyu. „Interval sets and interval-set algebras“. In 2009 8th IEEE International Conference on Cognitive Informatics (ICCI). IEEE, 2009. http://dx.doi.org/10.1109/coginf.2009.5250723.
Der volle Inhalt der QuelleKwon, Junseok, und Kyoung Mu Lee. „Interval Tracker: Tracking by Interval Analysis“. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.447.
Der volle Inhalt der QuelleLi, Xiu-hai. „Interval Cloud Model and Interval Cloud Generator“. In 2010 Second Global Congress on Intelligent Systems (GCIS). IEEE, 2010. http://dx.doi.org/10.1109/gcis.2010.174.
Der volle Inhalt der QuelleChuang, Chen-Chia, Chin-Wen Li, Chih-Ching Hsiao, Shun-Feng Su und Jin-Tsong Jeng. „Robust interval support vector interval regression networks for interval-valued data with outliers“. In 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). IEEE, 2014. http://dx.doi.org/10.1109/scis-isis.2014.7044510.
Der volle Inhalt der QuellePinhanez, Claudio S., Kenji Mase und Aaron Bobick. „Interval scripts“. In the SIGCHI conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258549.258758.
Der volle Inhalt der QuellePeschlow, Patrick, Peter Martini und Jason Liu. „Interval Branching“. In 2008 ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation ( PADS). IEEE, 2008. http://dx.doi.org/10.1109/pads.2008.8.
Der volle Inhalt der QuelleChou, Pai, und Gaetano Borriello. „Interval scheduling“. In the 32nd ACM/IEEE conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/217474.217571.
Der volle Inhalt der QuelleMockus, Audris, und David Weiss. „Interval quality“. In the 13th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1368088.1368190.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interval"
Chiaro, P. J. Jr. Calibration interval technical basis document. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/304106.
Der volle Inhalt der QuelleABDURRAHAM, N. M. Interval estimation for statistical control. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/808232.
Der volle Inhalt der QuelleThompson, Andrew A. Interval Scales From Paired Comparisons. Fort Belvoir, VA: Defense Technical Information Center, Mai 2012. http://dx.doi.org/10.21236/ada568737.
Der volle Inhalt der QuelleS. Kuzio. Probability Distribution for Flowing Interval Spacing. Office of Scientific and Technical Information (OSTI), Mai 2001. http://dx.doi.org/10.2172/837138.
Der volle Inhalt der QuelleS. Kuzio. Probability Distribution for Flowing Interval Spacing. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/838653.
Der volle Inhalt der QuelleLoui, Ronald, Jerome Feldman, Henry Kyburg und Jr. Interval-Based Decisions for Reasoning Systems. Fort Belvoir, VA: Defense Technical Information Center, Januar 1989. http://dx.doi.org/10.21236/ada250540.
Der volle Inhalt der QuelleMcAllester, David A., Pascal Van Hentenryck und Deepak Kapur. Three Cuts for Accelerated Interval Propagation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1995. http://dx.doi.org/10.21236/ada298215.
Der volle Inhalt der QuelleParks, A. D. Interval Graphs and Hypergraph Acyclicity Degree. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada241458.
Der volle Inhalt der QuelleMorozov. METHOD OF INTERVAL EXOGENOUS RESPIRATORY HYPOXIC TRAINING. Federal State Budgetary Educational Establishment of Higher Vocational Education "Povolzhskaya State Academy of Physical Culture, Sports and Tourism" Naberezhnye Chelny, Dezember 2013. http://dx.doi.org/10.14526/42_2013_14.
Der volle Inhalt der QuelleMalkin, G., und A. Harkin. TFTP Timeout Interval and Transfer Size Options. RFC Editor, März 1995. http://dx.doi.org/10.17487/rfc1784.
Der volle Inhalt der Quelle