Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interstitial doping of C and N“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interstitial doping of C and N" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interstitial doping of C and N"
Piątkowska, Aleksandra, Magdalena Janus, Kacper Szymański und Sylwia Mozia. „C-,N- and S-Doped TiO2 Photocatalysts: A Review“. Catalysts 11, Nr. 1 (19.01.2021): 144. http://dx.doi.org/10.3390/catal11010144.
Der volle Inhalt der QuelleKosaka, Hisashi, Yasuyuki Kaneno und Takayuki Takasugi. „Ductilization of a Ni3(Si,Ti) Intermetallic Alloy by Addition of Interstitial Type Elements“. Advanced Materials Research 409 (November 2011): 321–26. http://dx.doi.org/10.4028/www.scientific.net/amr.409.321.
Der volle Inhalt der QuelleXiao, Qi, und Chi Yao. „Visible Light Photocatalytic Activity of C, N, S-Tridoped Anatase TiO2 Nanosheets“. Advanced Materials Research 391-392 (Dezember 2011): 1117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.1117.
Der volle Inhalt der QuelleKurokawa, Mao, Takao Shimizu, Mutsuo Uehara, Atsuo Katagiri, Kensuke Akiyama, Masaaki Matsushima, Hiroshi Uchida, Yoshisato Kimura und Hiroshi Funakubo. „Control ofp- andn-type Conduction in Thermoelectric Non-doped Mg2Si Thin Films Prepared by Sputtering Method“. MRS Advances 3, Nr. 24 (2018): 1355–59. http://dx.doi.org/10.1557/adv.2018.150.
Der volle Inhalt der QuelleBöhm, Michael C., Thomas Schedel-Niedrig, Hartmut Werner, Robert Schlögl, Joachim Schulte und Johannes Schütt. „Electronic Structure of the C60 Fragment in Alkali- and Alkaline-earth-doped Fullerides“. Zeitschrift für Naturforschung A 51, Nr. 4 (01.04.1996): 283–98. http://dx.doi.org/10.1515/zna-1996-0408.
Der volle Inhalt der QuelleLin, Licheng, Deen Gu, Yonghai Ma, Yatao Li und Kai Yuan. „Facile Preparation of N/F Co-Doped Mesoporous TiO2 vis-Photocatalyst based on a Bi-Functional Template“. Nano 15, Nr. 11 (November 2020): 2050144. http://dx.doi.org/10.1142/s1793292020501441.
Der volle Inhalt der QuelleLin, Yu-Hao, Chih-Huang Weng, Arun Lal Srivastav, Yao-Tung Lin und Jing-Hua Tzeng. „Facile Synthesis and Characterization of N-Doped TiO2Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene“. Journal of Nanomaterials 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/807394.
Der volle Inhalt der QuelleShi, Jingming, Yu Lei, Naoyuki Hashimoto und Shigehito Isobe. „Doping of Interstitials (H, He, C, N) in CrCoFeNi High Entropy Alloy: A DFT Study“. MATERIALS TRANSACTIONS 61, Nr. 4 (01.04.2020): 616–21. http://dx.doi.org/10.2320/matertrans.mt-mk2019009.
Der volle Inhalt der QuelleLin, Yao-Tung, Chih-Huang Weng, Hui-Jan Hsu, Yu-Hao Lin und Ching-Chang Shiesh. „The Synergistic Effect of Nitrogen Dopant and Calcination Temperature on the Visible-Light-Induced Photoactivity of N-Doped TiO2“. International Journal of Photoenergy 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/268723.
Der volle Inhalt der QuelleGertsriken, D. S., V. F. Mazanko, D. V. Mironov und S. Ye Bogdanov. „Formation of introduction solid solutions and phases under the conditions of ion bombardment of metals in the glow discharge“. Metaloznavstvo ta obrobka metalìv 98, Nr. 2 (07.06.2021): 3–13. http://dx.doi.org/10.15407/mom2021.02.003.
Der volle Inhalt der QuelleDissertationen zum Thema "Interstitial doping of C and N"
Papež, Pavel. „Počítačové modelování slitin s vysokou entropií“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442746.
Der volle Inhalt der QuelleHINOJOSA, PAOLA ALEXANDRA AYALA. „IMPLICATIONS OF THE C/N FEEDSTOCK ON CONTROLLING THE NITROGEN DOPING AND BONDING ENVIRONMENT IN CARBON NANOTUBES“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10399@1.
Der volle Inhalt der QuelleOs tópicos mais importantes a ser tratados nesta tese de doutorado são os vários problemas envolvidos na síntese de nanotubos contendo nitrogênio. Isto é principalmente motivado pelas possíveis aplicações que podem ser dadas a este tipo de estruturas. A motivação central está relacionada ao fato da possibilidade de fazer dopagens tipo -p e -n em nanotubos de carbono, incorporando átomos como boro ou nitrogênio. Isto está muito longe de ser uma trivialidade devido a que devemos levar em conta que se os nanotubos de carbono forem pensados como bases estruturais para nanocompósitos e dispositivos nanoeletronicos, é necessário controlar cuidadosamente a reatividade das paredes, sua dureza mecânica e o gap eletrônico por meio de um controle da quantidade de átomos inseridos nas paredes ou entre elas. Portanto, do ponto de vista de diferentes aplicações, é importante ter a possibilidade de dopar controladamente os nanotubos. Neste trabalho apresentam-se o quadro descritivo da dependência dos parâmetros de síntese, assim como uma investigação detalhada da formação de outras estruturas co-produto do processo de formação de nanotubos. Como uma idéia pioneira proposta neste trabalho, é enfatizado o uso de fontes puras de C/N em processos de síntese baseados em deposição química na fase de vapor. Desta maneira foi possivel determinar os efeitos da atmosfera de reação e o pretratamento do catalizador como agentes favoráveis ou desfavoráveis para a síntese efetiva de nanotubos de carbono.
The main topic of this thesis is the study of various issues related to the synthesis of nitrogen containing nanotubes. This is mainly inspired in the possible applications such structures can have. The practical background lies in the fact that defined n- and p-doping of carbon nanotubes can be achieved by substituting carbon atoms from the tube walls by heteroatoms such as boron or nitrogen (N). This is far from been a triviality because we must keep in mind that if carbon nanotubes are to be used as future building blocks in nanocomposites and nanoelectronic devices, it is imperative to fine tune their wall reactivity, mechanical strength and electronic band gap by controlling the amount of foreign atoms inserted into the tube lattices. Therefore, from an applications standpoint, it is important to be able to carefully control the insertion of different dopants into nanotubes. In this work, a complete picture of the dependence on the combined synthesis parameters is established and a fundamental insight into the formation of N doped nanotubes and other structures (co- products) is provided. As a pioneering idea of this whole work, the use of pure C/N feedstocks in chemical vapor deposition methods is emphasized. With this, it was possible to determine the effects of the reaction atmosphere and the catalyst pretreatment as either favoring or disfavoring agents towards the synthesis of N-doped nanotubes.
Shen, Jingyi. „Density functional theory study on the interstitial chemical shifts of main-group-element centered hexazirconium halide clusters; synthetic control of speciation in [(Zr6ZCl12)] (Z = B, C)-based mixed ligand complexes“. Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2444.
Der volle Inhalt der QuelleTomey, Lopez Estanislao Pablo. „Contribution à l'étude des propriétés structurales et magnétiques des composés intermétalliques de terre rare RFe10,5Mo1,5 : effets des éléments interstitiels H, C et N“. Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10245.
Der volle Inhalt der QuelleBuchteile zum Thema "Interstitial doping of C and N"
Kapusta, Cz, und P. C. Riedi. „NMR Studies of Intermetallics and Interstitial Solutions Containing H, C and N“. In Interstitial Intermetallic Alloys, 497–520. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0295-7_20.
Der volle Inhalt der QuelleRubio, Angel. „Electronic and Doping Properties of B x C y N z Nanotubes“. In Nanowires, 133–42. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8837-9_9.
Der volle Inhalt der QuelleDesimoni, J. „Arrangements of Interstitial Atoms in fcc Fe—C and Fe—N Solid Solutions“. In ICAME 2003, 505–21. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2852-6_75.
Der volle Inhalt der QuelleAziz, A., O. Bonnaud, H. Lhermite, Y. Colin und A. Leglaunec. „Lateral Polysilicon n+p Diodes: Effect of the Grain Boundaries and of the p-Implanted Doping Level on the I-V and C-V Characteristics“. In Springer Proceedings in Physics, 318–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76385-4_45.
Der volle Inhalt der QuellePivac, B., A. Sassella und A. Borghesi. „Non-doping light impurities in silicon for solar cells“. In C,H,N and O in Si and Characterization and Simulation of Materials and Processes, 55–62. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82413-4.50018-4.
Der volle Inhalt der QuelleGorelkinskii, Yu V., und N. N. Nevinnyi. „EPR of interstitial hydrogen in silicon: Uniaxial stress experiments“. In C,H,N and O in Si and Characterization and Simulation of Materials and Processes, 133–37. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82413-4.50035-4.
Der volle Inhalt der QuelleTomm, Y., L. Ivaneko, K. Irmscher, St Brehme, W. Henrion, I. Sieber und H. Lange. „Effects of doping on the electronic properties of semiconducting iron disilicide“. In C,H,N and O in Si and Characterization and Simulation of Materials and Processes, 215–18. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82413-4.50112-8.
Der volle Inhalt der QuelleSimoen, E., J. P. Dubuc, J. Vanhellemont und C. Claeys. „Impact of the starting interstitial oxygen concentration on the electrical characteristics of electron irradiated Si junction diodes“. In C,H,N and O in Si and Characterization and Simulation of Materials and Processes, 179–82. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82413-4.50046-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interstitial doping of C and N"
Harashima, Y., K. Terakura, H. Kino, S. Ishibashi und T. Miyake. „Electron theory of interstitial dopant dependence of magnetic properties in NdFe11TiX (X= B, C, N, O, F)“. In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157023.
Der volle Inhalt der QuelleRani, Priti, Jyoti Thakur, Ankur Taya und Manish K. Kashyap. „Effect of tetragonal distortion induced by interstitial C-doping in L10-FeNi“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113336.
Der volle Inhalt der QuelleO’Hayre, Ryan, Yingke Zhou, Robert Pasquarelli, Joe Berry und David Ginley. „Enhancement of Pt-Based Catalysts via N-Doped Carbon Supports“. In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53078.
Der volle Inhalt der QuelleMizutani, N., S. Sakiyama und K. Fujita. „Controllable n- to p-type Doping of MEH-PPV Films by Evaporative Spray Deposition using Ultra-Dilute Solution Method“. In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.c-4-2.
Der volle Inhalt der QuelleKuznetsov, Mikhail G., Alexander A. Kokin und Sergey A. Kokin. „C-V model of the MOS structures with a shallow p-n junction for the electro-physical parameters and profile of the doping determination“. In Microelectronic Manufacturing '95, herausgegeben von Ih-Chin Chen, Girish A. Dixit, Trung T. Doan und Nobuo Sasaki. SPIE, 1995. http://dx.doi.org/10.1117/12.221124.
Der volle Inhalt der QuelleZhou, Yingke, Robert Pasquarelli, Joe Berry, David Ginley und Ryan O’Hayre. „Improving PEM Fuel Cell Catalysts Using Nitrogen-Doped Carbon Supports“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65172.
Der volle Inhalt der QuelleDing, Cong, Yufei Zhang, Chen Chuan und Yanhua Liu. „Preparation and Photocatalysis of a Glass Coated With Nanometer TiO2 Codoped With N, F and Fe Elements“. In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6424.
Der volle Inhalt der QuelleIyer, D., A. Messinger, R. Crowder, Y. Zhang, O. Amster, S. Friedman, Y. Yang und F. Stanke. „Measurement of Dielectric Constant and Doping Concentration of a Cross-Sectioned Device by Quantitative Scanning Microwave Impedance Microscopy“. In ISTFA 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.istfa2017p0613.
Der volle Inhalt der QuelleLin, Hsiu-Li, Chih-Ren Hu, Po-Hao Su, Yu-Cheng Chou und Che-Yu Lin. „Proton Exchange Membranes Based on Blends of Poly(Benzimidazole) and Butylsulfonated Poly(Beznimidazole) for High Temperature PEMFC“. In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33031.
Der volle Inhalt der QuelleChen, Guanying, Tianyu Zhao, Deyang Li und Yiyan Zhang. „CsPbBr3 perovskite nanocrystal/S doping g-C3N4 ultra-thin nanosheet heterojunction with enhanced interfacial charge transfer for photocatalytic CO2 reduction“. In 2nd International Online-Conference on Nanomaterials. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iocn2020-07930.
Der volle Inhalt der Quelle