Dissertationen zum Thema „Interstellar molecules“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Interstellar molecules" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Whelan, Mark Clifford. „Spectroscopic studies of interstellar molecules“. Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/68548/.
Der volle Inhalt der QuelleCouch, Philip Anthony. „Molecules in circumstellar and interstellar environments : TiO“. Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247564.
Der volle Inhalt der QuelleHolland, Simon Michael. „Highly excited molecules and the interstellar maser“. Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265469.
Der volle Inhalt der QuelleHarada, Nanase. „Interstellar Molecules in Galactic and Extragalactic Sources“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1312559226.
Der volle Inhalt der QuelleCernicharo, José. „Matiere diffuse et molecules interstellaires“. Paris 7, 1988. http://www.theses.fr/1988PA077028.
Der volle Inhalt der QuelleQuan, Donghui. „Chemical Modeling of Interstellar Molecules in Dense Cores“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259614944.
Der volle Inhalt der QuelleVichetti, Rafael Mário [UNESP]. „Síntese dos isótopos do monóxido de carbono no meio interestelar“. Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/91889.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
De acordo com os resultados observacionais de condensações de nuvens moleculares escuras, grandes variações na razão 13CO/C18O são observadas quando se comparam os resultados obtidos nas condensações situadas dentro da mesma nuvem, bem como de nuvem para nuvem. O valor médio dessa razão na condensação principal de Ophiuchus é inferior a 5. Por outro lado, o valor encontrado nas condensações que estão situadas ao norte de Oph é maior que 10. Grandes diferenças também são encontradas quando se comparam os resultados observacionais de diferentes nuvens escuras, tais como Ophiuchus e Taurus, onde são observados também um decréscimo da razão C18O/C17O com o aumento da densidade. Os processos químicos e físicos que governam essas variações ainda não estão claros. Nesse sentido, o objetivo da presente proposta é analisar a influência do colapso gravitacional de condensações de nuvens moleculares escuras na síntese das moléculas CO, C17O, C18O, 13CO, 13C17O e 13C18O. Tal análise é feita com base em comparações entre modelos que consideram diferentes condições entre si, tais como, tamanho da cadeia química, velocidade de colapso, densidade inicial e processos de congelamento de espécies químicas na superfície de grãos de poeira. Os resultados obtidos mostram que o tamanho da cadeia química tem influência nas razões 13CO/C18O e C18O/C17O, mas não tanto quanto a densidade inicial e a velocidade do colapso. Além disso, o congelamento das espécies químicas nos grãos é mais significativo nos estágios mais avançados da evolução da condensação. Os modelos de condensações escuras que sofrem colapso gravitacional lento e em queda livre reproduzem satisfatoriamente as razões 13CO/C18O e C18O/C17O observadas, o que permite concluir que o colapso gravitacional pode ter um importante efeito nas referidas razões.
According to the observational results of dark molecular clouds condensations, large variations in the ratio 13CO/C18O are observed when comparing the results obtained in the condensations located within the same cloud and cloud to cloud. The average value of this ratio in the main condensation of Ophiuchus is below 5. On the other hand, the value found in the condensations that are located north of Oph is larger than 10. Large differences are also found when comparing the observational results of different dark clouds such as Ophiuchus and Taurus, in which are also found a decrease of the C18O/C17O ratio with increasing density. The chemical and physical processes that govern these variations are still unclear. In this sense, the objective of this proposal is to analyze the influence of the gravitational collapse of centrally condensed clumps of dense molecular gas in the synthesis of the CO, C17O, C18O, 13CO, 13C17O and 13C18O molecules. This analysis is based on comparisons among models that consider different condition, such as, chemical chain, initial density, speed of collapse and freezing processes of the chemical species on the surface of dust grains. The results show that the size of the chemical chain has influence on the 13CO/C18O and C18O/C17O ratios, but they are not as important as the initial density and the speed of the collapse. Furthermore, the freezing of chemical species on the grains occurs at later times of the collapse. The models of a gravitational free-fall collapsing core and of slowly contracting core with higher initial density are consistent with observations. These results indicate that the gravitational collapse of molecular cores can have an important effect in the 13CO/C18O and C18O/C17O ratios.
Smith, Arfon. „Dust and molecules in interstellar, circumstellar and extragalactic environments“. Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438422.
Der volle Inhalt der QuelleDoronin, Mikhail. „Adsorption on interstellar analog surfaces : from atoms to organic molecules“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066254/document.
Der volle Inhalt der QuelleGas-grain interaction plays an important role in the chemistry of the cold interstellar medium and protoplanetary disks. A key parameter for modeling the exchange between grain surfaces and gas phase is adsorption energy, Ea. This work aims to develop a reliable and systematic experimental/theoretical approach to determine the adsorption energies of relevant atoms and molecules on models of interstellar grain surfaces. Employed experimental technique is the Temperature Programmed Desorption. Developed experimental protocol and data treatment technique based on distribution of adsorption energies and use of a set of heating rates enable to determine the coupled parameters of Polanyi-Wigner equation: adsorption energy Ea and prefactor N. Computational chemistry approach, Density Functional Theory (DFT) as implemented in Vienna Ab initio Simulation Package (VASP) is used to get the insight on the behaviour of the surface-adsorbate systems at the atomic level. This approach allows as well to determine adsorption energies. A presence of multiple adsorption sites with different adsorption energies is predicted. Methanol CH3OH adsorption on graphite is used as a known example to validate the technique. Ar/Kr/Xe adsorption on water ice is studied as a case relevant for planetology. Acetonitrile (CH_3CN) and methyl isocyanide (CH_3NC) adsorption on water ice, quartz and graphite is investigated since those two molecules are both detected in the interstellar medium. Adsorption energies determined in this work will be included in KIDA database
Hunt, Maria, University of Western Sydney, of Science Technology and Environment College und School of Engineering and Industrial Design. „Molecules in southern molecular clouds: a millimetre-wave study of dense cores“. THESIS_CSTE_EID_Hunt_M.xml, 2001. http://handle.uws.edu.au:8081/1959.7/116.
Der volle Inhalt der QuelleDoctor of Philosophy (PhD)
Hunt, Maria. „Molecules in southern molecular clouds: a millimetre-wave study of dense cores“. Thesis, View thesis View thesis, 2001. http://handle.uws.edu.au:8081/1959.7/116.
Der volle Inhalt der QuellePeppe, Salvatore. „Some unusual, astronomically significant organic molecules“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09php4241.pdf.
Der volle Inhalt der QuelleBolina, Amandeep Singh. „Adsorption of astrochemically relevant molecules on interstellar dust grain analogue surfaces“. Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1445324/.
Der volle Inhalt der QuelleHunt, Maria. „Molecules in southern molecular clouds : a millimetre-wave study of dense cores /“. View thesis View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030416.160909/index.html.
Der volle Inhalt der QuelleMarchione, Demian. „Thermal and non-thermal processes of simple molecules on model interstellar ices“. Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/3010.
Der volle Inhalt der QuelleVazart, Fanny. „Gas-phase formation of Complex Organic Models molecules in interstellar medium: computational investigations“. Doctoral thesis, Scuola Normale Superiore, 2017. http://hdl.handle.net/11384/85813.
Der volle Inhalt der QuelleGatchell, Michael. „Molecular Hole Punching : Impulse Driven Reactions in Molecules and Molecular Clusters“. Doctoral thesis, Stockholms universitet, Fysikum, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129523.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Submitted.
Jacob, Arshia Maria [Verfasser]. „Small Molecules, Big Impact : Investigating Hydrides in the Interstellar Medium / Arshia Maria Jacob“. Bonn : Universitäts- und Landesbibliothek Bonn, 2021. http://d-nb.info/1238687237/34.
Der volle Inhalt der QuelleVichetti, Rafael Mário. „Síntese dos isótopos do monóxido de carbono no meio interestelar /“. Rio Claro : [s.n.], 2009. http://hdl.handle.net/11449/91889.
Der volle Inhalt der QuelleBanca: Edson Denis Leonel
Banca: José Williams dos Santos Vilas Boas
Resumo: De acordo com os resultados observacionais de condensações de nuvens moleculares escuras, grandes variações na razão 13CO/C18O são observadas quando se comparam os resultados obtidos nas condensações situadas dentro da mesma nuvem, bem como de nuvem para nuvem. O valor médio dessa razão na condensação principal de Ophiuchus é inferior a 5. Por outro lado, o valor encontrado nas condensações que estão situadas ao norte de Oph é maior que 10. Grandes diferenças também são encontradas quando se comparam os resultados observacionais de diferentes nuvens escuras, tais como Ophiuchus e Taurus, onde são observados também um decréscimo da razão C18O/C17O com o aumento da densidade. Os processos químicos e físicos que governam essas variações ainda não estão claros. Nesse sentido, o objetivo da presente proposta é analisar a influência do colapso gravitacional de condensações de nuvens moleculares escuras na síntese das moléculas CO, C17O, C18O, 13CO, 13C17O e 13C18O. Tal análise é feita com base em comparações entre modelos que consideram diferentes condições entre si, tais como, tamanho da cadeia química, velocidade de colapso, densidade inicial e processos de congelamento de espécies químicas na superfície de grãos de poeira. Os resultados obtidos mostram que o tamanho da cadeia química tem influência nas razões 13CO/C18O e C18O/C17O, mas não tanto quanto a densidade inicial e a velocidade do colapso. Além disso, o congelamento das espécies químicas nos grãos é mais significativo nos estágios mais avançados da evolução da condensação. Os modelos de condensações escuras que sofrem colapso gravitacional lento e em queda livre reproduzem satisfatoriamente as razões 13CO/C18O e C18O/C17O observadas, o que permite concluir que o colapso gravitacional pode ter um importante efeito nas referidas razões.
Abstract: According to the observational results of dark molecular clouds condensations, large variations in the ratio 13CO/C18O are observed when comparing the results obtained in the condensations located within the same cloud and cloud to cloud. The average value of this ratio in the main condensation of Ophiuchus is below 5. On the other hand, the value found in the condensations that are located north of Oph is larger than 10. Large differences are also found when comparing the observational results of different dark clouds such as Ophiuchus and Taurus, in which are also found a decrease of the C18O/C17O ratio with increasing density. The chemical and physical processes that govern these variations are still unclear. In this sense, the objective of this proposal is to analyze the influence of the gravitational collapse of centrally condensed clumps of dense molecular gas in the synthesis of the CO, C17O, C18O, 13CO, 13C17O and 13C18O molecules. This analysis is based on comparisons among models that consider different condition, such as, chemical chain, initial density, speed of collapse and freezing processes of the chemical species on the surface of dust grains. The results show that the size of the chemical chain has influence on the 13CO/C18O and C18O/C17O ratios, but they are not as important as the initial density and the speed of the collapse. Furthermore, the freezing of chemical species on the grains occurs at later times of the collapse. The models of a gravitational free-fall collapsing core and of slowly contracting core with higher initial density are consistent with observations. These results indicate that the gravitational collapse of molecular cores can have an important effect in the 13CO/C18O and C18O/C17O ratios.
Mestre
Harrison, S. „Electron-collisions with molecules of interstellar and plasma interest via the R-Matrix method“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1370630/.
Der volle Inhalt der QuelleSkolimowska, Ewelina Szymanska. „Dissociative electron attachment and dipolar dissociation processes in organic molecules found in the interstellar medium“. Thesis, Open University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606955.
Der volle Inhalt der QuelleEl, Yajouri Meriem. „Diffuse Interstellar Bands (DIBs) : a new look at an old problem“. Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEO017/document.
Der volle Inhalt der QuelleDiffuse interstellar bands (DIBs) represent a century-old mystery: none of the hundreds of bands could be identified with certainty with a specific carrier, at the very likely exception of the buckminsterfullerene cation C60+. Identifying and quantifying the amount of the large interstellar carbonaceous molecules that are very likely responsible for the DIBs is mandatory: DIB carriers likely represent the largest amount of organic matter in the Universe and are an important piece of the chain of processes that govern the interstellar/stellar cycle.Up to recently, most of the DIB studies have had as a unique goal the identification of the carriers, and to do so have been focusing on a limited number of hot, distant and reddened stars, using increasingly powerful instruments. This thesis marks a turning point in the methods and goals associated with the DIBs, an evolution allowed and motivated by the increasing number of stellar surveys with high multiplex instruments. As a matter of fact, it is possible today to gather massive amounts of data, both from the point of view of the number of target stars and from the point of view of the number of DIBs simultaneously observed. This has opened the way to new types of studies, more ambitious goals, and, importantly, new potential comparisons with laboratory data. This thesis presents a large number of DIB extractions and four of these novel analyses :- Methods of extraction and search for new DIBs.- Statistical studies of the link between DIB strengths and the physical properties of their hosting clouds.- Tomographic studies of the carriers on large and small spatial scales.- Line profile extractions based on carefully selected sightlines, studies of their substructures and spatial variability and subsequent constraints on their potential molecular carriers
Kurdi, Louay. „Etude theorique des interactions intermoleculaires a grandes et moyennes distances dans le systeme de molecules interstellaires nh : :(3)+h::(2)“. Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13174.
Der volle Inhalt der QuelleStantcheva, Tatiana. „Application of stochastic approaches to modeling of interstellar chemistry“. Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1085581872.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages; contains xii, 146 p.; also includes graphics (some col.) Includes bibliographical references (p. 141-146). Available online via OhioLINK's ETD Center
Pouladsaz, Davoud. „From Interstellar Medium to Nanosurfaces: A Theoretical Study of Electronic Structure and Spectroscopic Properties of Molecules and Clusters“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-96529.
Der volle Inhalt der QuellePearcy, Adam C. „Non-covalent and covalent interactions between phenylacetylene and quinoline radical cations with polar and non-polar molecules in the gas phase“. VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5990.
Der volle Inhalt der QuelleZhou, Luwenjia. „Probing the processes driving distant and local star-formation in galaxies through dust and molecules“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP099.
Der volle Inhalt der QuelleStudies on galaxy evolution have been revolutionized during the last decade thanks to the state-of-the-art telescopes and instruments. Herschel Space Telescope, ALMA and NOEMA interferometers can observe the dust emission that traces star formation missed by optical to near-infrared telescopes. Their high sensitivity pushes further their detections to the most distant galaxies or the faintest local galaxies, of which the formation and evolution challenge current theories and models. And the integral field unit technique combines the spatial information with the properties extracted from spectra which allows a thorough study of galaxy kinematics. In this thesis, I focus on the large-scale (~kpc) star formation of galaxies. Taking advantage of the data from Herschel, ALMA, NOEMA, and the SAMI IFU survey, my thesis tries to put more constraints on the following questions: (1) How did the first galaxies form stars out of gas with little metal? (2) How did the massive galaxies in the early Universe rapidly build up their masses and finally stop forming stars? and (3) what is the role played by the environments they reside in? (4) How does star formation feedback affect the galaxy kinematics? A large portion of the work done in this thesis is based on the GOODS-ALMA survey, the largest cosmological survey with the large ALMA interferometer at 1.1 mm. I studied the six optically dark galaxies with redshifts greater than z =3 uncovered by this survey. We present evidence that four out of the six optically dark galaxies belong to the same overdensity of galaxies at z~3.5. One of them, AGS24, is the most massive galaxy without an active galactic nucleus at z >3 in the GOODS-ALMA field. It also falls in the very center of the galaxy surface density peak, suggesting that the surrounding overdensity is a proto-cluster in the process of virialization and that AGS24 is the candidate progenitor of the future brightest cluster galaxy. I also studied the molecular gas content in IZw18, one of the most metal poor galaxies in the local Universe based on the observation of NOEMA. I obtain an upper limit of CO J =2-1 emission, which is used as a tracer of molecular gas, to be ten times lower than previous studies despite its vigorous star formation activities. Such low CO content relative to its infrared luminosity, star formation rate and [CII] luminosity, indicates a drastic change in the structure of the ISM at around a few percentages of Solar metallicity. Especially, the high [CII] luminosity relative to CO implies a larger molecular reservoir than the CO emitter in IZw18. My work on the energy sources of the turbulent motions shows that on sub-kpc scales, local star-forming galaxies from the SAMI survey display a flat distribution of ionized gas velocity dispersion as a function of star formation rate surface density. However, the velocity dispersion floor is higher than predicted by feedback-driven models. This suggests that additional sources to star formation feedback drive random motions of the interstellar medium in star-forming galaxies. Finally I present my work on the spatially resolved dust emission of extremely metal-poor galaxies observed by Herschel. These galaxies show higher dust temperatures and lower emissivity indices compared to those of spiral galaxies. And about half of the emission at 100μm comes from warm (50,K) dust, in contrast to the cold (~20K) dust component. The far-infrared colours are all related to the surface densities of young stars, but not to the stellar mass surface densities. This suggests that their dustemission (70~350μm) is primarily heated by radiation from young stars
Savić, Igor. „Formation of Small Hydrocarbon Ions Under Inter- and Circumstellar Conditions: Experiments in Ion Traps“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401322.
Der volle Inhalt der QuelleUnter Verwendung von zwei Speicherapparaturen wurden ausgewählte, astrophysikalische wichtige Ionen-Molekülreaktionen untersucht. Durch die Kombination einer Kohlenstoffquelle mit einem Ionenspeicher, in dem so Reaktionen zwischen Ionen und Kohlenstoffmolekülen oder -atomen untersucht werden können, wurde Neuland betreten. Es werden Ergebnisse vorgestellt für die Reaktion von D3+ Ionen, die in einem Ringelektrodenspeicher gefangen sind, mit einem Strahl von heißen Cn (n = 1, 2, 3). Die gemessenen Ratenkoeffizienten sind nur halb so groß wie die Werte, die in astrophysikalischen Modellen verwendet werden. Um die Kenntnis über alle möglichen Reaktionen, bei denen drei C-Atome beteiligt sind, abzurunden, wurden zwischen 15 K und Zimmertemperatur die Reaktionen zwischen C3+, C3H+ und C3H3+ Ionen mit H2 und HD in vielen Details untersucht. Diese Experimente wurden in einer zweiten Apparatur durchgeführt, in der ein temperaturvariabler 22-Polspeicher das zentrale Element ist (VT-22PT). Berichtet werden Ergebnisse zu reaktiven Stößen, zur Deuterierung von Kohlenwasserstoffen und zur Strahlungsassoziation. In der Diskussion bleibt offen, was - in Verbindung mit der von 300 K zu 15 K zunehmenden Lebensdauer - der Grund dafür sein kann, daß die Bildung des exothermen Produkts C3H+ anwächst. Der Tunneleffekt scheidet aus. Bei der Reaktion C3+ + HD wurde ein Isotopeneffekt beobachtet, das C3D+ Produkt wird etwas häufiger gebildet als C3H+. Ein Vergleich der Reaktion zwischen C3H+ Ionen mit HD bzw. H2 zeigt, daß das deuterierte Molekül wesentlich reaktiver ist. Es wurden Ratenkoeffizienten für die Strahlungsassoziation von H2 Molekülen mit C3H+ und erstmals mit C3+ Ionen gemessen. Die Auswertung der Daten zeigt, dass der Prozeß langsamer abläuft, wenn der neutrale Stoßpartner deuteriert ist. Schließlich wurde experimentell die theoretische Vorhersage überprüft, dass C3H3+ keinen H-D Austausch mit HD eingeht. Eine sorgfältige Analyse aller konkurrierenden Prozesse ergab, dass bei 15 K der Raten koeffizient kleiner als 4x10-16 cm3s-1 ist
Fournier, Martin. „Reactivity of C₃N and C₂H at low temperature : applications for the Interstellar Medium and Titan“. Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S100/document.
Der volle Inhalt der QuelleThe interstellar medium and some atmospheres of planetary bodies, in particular Titan, one of the largest satellites of Saturn, present a large variety of chemical species. This complex chemistry is very different from the one we know on Earth. To understand the global phenomenon that happen in these environments, we need to understand the chemical reactions, their reaction rate and their products. With the CRESU technique, we are able to reproduce partially the coldest environments of space to study these reactions
Chang, Qiang. „Continuous-time random-walk simulation of surface kinetics“. The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1166592142.
Der volle Inhalt der QuelleJallat, Aurélie. „Fragmentation de molécules carbonées d'intérêt astrophysique auprès des accélérateurs“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112204.
Der volle Inhalt der QuelleNowadays, about 200 molecules have been observed in the interstellar medium, about 75% are carbon molecules and 25% hydrocarbons. Dust grains also contain carbon in large quantities. The presence of carbon in the majority of molecules of the gaseous phase and in the dust is due to its abundance and its ability to form bonds. So, it is crucial to study the carbon in an astrochemical point of view.In the first part, this work presents measurements of branching ratios and energy dissipated as kinetic energy in neutral fragments which are emitted in a high speed collision, of the following carbon molecules: SiC, AlC, AlCH, C ₂ O, CN, CH ₂ and CH. These measurements were obtained from the experimental setup AGAT. This setup is permanently installed at the Tandem Orsay facility. It allows molecule-atom collisions and 100% effective detection of all the transmitted fragments, including neutral ones.In the second part, the effect of the addition or correction of new hydrocarbon branching ratios is discussed, by modeling of chemistry of two famous objects: the photo-dissociation region of the Horsehead nebula and the molecular cloud TMC-1. Both objects are well known for their numerous observed molecules. These new branching ratios reduce the calculated abundances of species in the gas phase, even though these abundances were already too low compared to the observations. A hypothesis states that hydrocarbons are released into the gas phase via the carbonaceous interstellar dust. Following this assumption, for the first time, the effects of the incorporation of photo-production reactions of hydrocarbons from the hydrogenated amorphous carbons were studied on the chemistry of the gaseous phase of the Horsehead nebula. The addition of these reactions narrows the gap between modeling and observations
Cernuto, Andrea. „Dissociative charge transfer of organic molecules induced by collisions with the He+ cation. A joint experimental and theoretical study of relevance for the interstellar medium evolution“. Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/368436.
Der volle Inhalt der QuelleCernuto, Andrea. „Dissociative charge transfer of organic molecules induced by collisions with the He+ cation. A joint experimental and theoretical study of relevance for the interstellar medium evolution“. Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/2658/1/TESIdef_CERNUTO.pdf.
Der volle Inhalt der QuellePouladsaz, Davoud [Verfasser], Michael [Akademischer Betreuer] Schreiber, Michael [Gutachter] Schreiber und Gotthard [Gutachter] Seifert. „From Interstellar Medium to Nanosurfaces: A Theoretical Study of Electronic Structure and Spectroscopic Properties of Molecules and Clusters / Davoud Pouladsaz ; Gutachter: Michael Schreiber, Gotthard Seifert ; Betreuer: Michael Schreiber“. Chemnitz : Universitätsbibliothek Chemnitz, 2012. http://d-nb.info/121262713X/34.
Der volle Inhalt der QuelleEdwards, Jessica Louise. „Chemistry in the Final Stages of Stellar Evolution: Millimeter and Submillimeter Observations of Supergiants and Planetary Nebulae“. Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/565895.
Der volle Inhalt der QuelleFicut-Vicas, Dana. „Star formation in LITTLE THINGS dwarf galaxies“. Thesis, University of Hertfordshire, 2015. http://hdl.handle.net/2299/17095.
Der volle Inhalt der QuelleBoissé, Patrick. „Systemes de raies d'absorption des quasars. Transfert de rayonnement dans un milieu inhomogene“. Paris 7, 1987. http://www.theses.fr/1987PA077095.
Der volle Inhalt der QuellePacheco-Vazquez, Susana. „Unbiased Spectral Survey towards the intermediate-mass Class 0 protostar Cep E-mm“. Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY066/document.
Der volle Inhalt der QuelleIntermediate-mass (IM) protostars (2 ≤ M∗ ≤8 Msun) are the link between low and the high mass stars as they cover also an intermediate range of luminosities, densities and temperatures [Fuente et al., 2012]. Even though the IM-YSOs are important in the study of star formation, very little is known about the formation and first evolutionary stages of IM protostars. Unbiased spectral surveys are a powerful tool to characterize the chemical composition of an astrophysical object, and the only way to obtain a complete census of the chemical species. A spectral survey provides also multiple lines from the same molecule, giving the possibility of a multi-frequency analysis and modeling. Also, through line profiles, we can obtain kinematic information, and identify structures along the line of sight, as multiple sources, outflows, jets or cavities, e.g. [Caux et al., 2011]. The outflow phenomena (jets, winds and bipolar molecular outflows), are an inherent phase in the process of star formation observed in YSOs of all range of masses at millimeter wavelengths. However, there are not systematic studies in IM range as in the case of of low- and high-mass protostars. Given the lack of a systematic study of the mm/submm spectrum of IM protostars, during my thesis I carried out an unbiased spectral survey towards IM Class 0 Cep E protostar and its molecular outflow
Favre, Cécile. „Étude interférométrique du formiate de méthyle et d’autres molécules complexes dans la nébuleuse d’Orion Kleinmann-Low“. Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14146/document.
Der volle Inhalt der QuelleOver 150 different molecular species have been detected in the interstellar and circumstellar media. Among these, approximatively 60 are complex molecules and contain 6 or more atoms. The interstellar chemical processes that form more or less complex molecules, either on the surface of dust grains or in gas phase, are different from the processes we know on Earth. The only way to constrain chemical models relies on the observation and the analysis of the emission coming from various molecular species.The main goal of my PhD is to look for complex molecules in the nearest star forming region with both high and low mass stars, the Orion Kleinmann-Low nebula. I specially studied the emission of the methyl formate molecule (HCOOCH3) which appeared to be an abundant molecule and a good probe of the temperature and structure of Orion K-L.Using high spectral and spatial resolution millimetre observations (from 7’’ to 2’’ and from 2.3 km/s to 0.4 km/s, respectively) from the IRAM Plateau de Bure Interferometer, I carried out a detailed study of the emission of this O-bearing molecule towards the Compact Ridge component. Our study shows that this region seems to be heated by external mechanisms (e.g. shocks).Moreover, our observations toward the Compact Ridge region and its surroundings tend to confirm that methyl formate or a precursor seems to be formed on grain surfaces and is subsequently desorbed due to shocks.I also looked for the two isomers of methyl formate [C2H4O2] : glycolaldehyde and acetic acid. Owing to strong spectral confusion in the region, it is very difficult to detect low abundance molecules such as these two isomers. In order to lower the confusion level, higher spatial as well as spectral resolutions must be achieved which ALMA will soon allow.We derived upper limits for the column density of glycolaldehyde, a precursor of sugar (CH2OHCHO that has been detected towards SgrB2), these limits provide strong constraints for chemical models
Orkisz, Jan. „Understanding the structure of molecular clouds : multi-line wide-field imaging of Orion B“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY045/document.
Der volle Inhalt der QuelleThe new generation of wide-bandwidth high-resolution receivers turns almost any radio observation into a spectral survey. In the case of wide-field imaging of the interstellar medium, such a wealth of data provides new diagnostic tools, but also poses new challenges in terms of data processing and analysis. The ORION-B project aims at observing 5 square degrees of the OB molecular cloud, or about half of the cloud's surface, over the entire 3mm band. The emission of tens of molecular tracers has been mapped, including CO isotopologues, HCO, HCN, HNC, N$_2$H$^+$, methanol, SO, CN...Having access to spatially resolved maps from many molecular species enables us to identify the best tracers of the gas density and illumination. Machine learning techniques have also been applied to these maps, in order to segment the molecular cloud into typical regions based on their molecular emission, and to quantify the most meaningful correlations of different molecular tracers with each other and with physical quantities such as density or dust temperature.The wide-field coverage, together with the spatial and spectral resolution, also allows to characterize statistically the kinematics and dynamics of the gas. The amount of momentum in the compressive and solenoidal (rotational) modes of turbulence are retrieved, showing that the cloud is dominated by solenoidal motions, with the compressive modes being concentrated in two star-forming regions. This result is in line with the overall very low star formation efficiency of the cloud, and highlights the role of compressive forcing in the star formation process.The numerous filaments identified in the molecular cloud also prove to have rather low densities, and are very stable against gravitational collapse. Most filaments are starless, but they show signs of longitudinal and radial fragmentation, which indicates that star formation might occur later on
Letzelter, Corinne. „Spectroscopie et photodissociation de la molecule de co : applications astrophysiques“. Paris 6, 1987. http://www.theses.fr/1987PA066182.
Der volle Inhalt der QuelleChehrouri, Mourad. „Analyse par spectroscopies des molécules formées par interaction d'atomes H,O et N sur des surfaces simulant les grains interstellaires et prédiction des voies de réaction“. Thesis, Cergy-Pontoise, 2011. http://www.theses.fr/2011CERG0514/document.
Der volle Inhalt der QuelleThe work that I present in this thesis is primarily an experimental work carried out in the LAMAp laboratory at the University of Cergy-Pontoise, using the experimental device called FORMOLISM. The main components of this device are: ultra-high vacuum (10-10 mbar), ultra-low temperature (~5 K), atomic jets, TPD mass spectrometry (Thermally Programmed Desorption) and laser spectroscopy using ultraviolet wavelengths around ~200 nm. Thanks to the REMPI-TOF (Resonantly Enhanced Multi-Photon Ionization – Time Of Flight) technique, we have studied i) the nuclear spin conversion of the hydrogen molecule H2 on a porous amorphous water ice surface and ii) the processes of formation of this molecule, which is the most abundant in the interstellar medium, on surfaces simulating interstellar dust grains. The results of this study are of capital interest in astrophysics. Actually, this formation cannot occur in the gas phase but can only be explained by the encounter of two hydrogen atoms on a dust grain in the interstellar medium, the latter playing the role of a catalyst. Different processes are involved in the formation of H2 which require to be identified. With this aim, I present entirely new results on molecular H2 formation on an amorphous silicate surface. I show that the molecule can form in a rovibrationnally excited state of its ground state up to a temperature of about 70 K and that the molecule is released into the gas phase immediately after its formation. These results demonstrate the competition between two mechanisms of formation at very low temperature (<18 K) while another mechanism takes over up to 70 K
Boulanger, François. „Emission infrarouge du milieu interstellaire“. Paris 6, 1987. http://www.theses.fr/1987PA066279.
Der volle Inhalt der QuelleValdivia, Valeska. „Impact of radiative transfer and chemistry on the formation of molecular clouds“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066709/document.
Der volle Inhalt der QuelleThe interstellar medium (ISM) is a highly complex system. It corresponds to an intermediate scale between stars and galaxies. The interstellar gas is present throughout the galaxy, filling the volume between stars. A wide variety of coupled processes, such as gravity, magnetic fields, turbulence and chemistry, participate in its evolution, making the modeling of the ISM a challenging problem. A correct description of the ISM requires a good treatment of the magnetohydrodynamics (MHD) equations, gravity, thermal balance, and chemical evolution within the molecular clouds.This thesis work aims at a better understanding of the formation and evolution of molecular clouds, specially how they become "molecular", paying particular attention to the transition HI-to-H2. We have performed ideal MHD simulations of the formation of molecular clouds and the formation of molecular hydrogen under the influence of gravity and turbulence, using accurate estimates for the shielding effects from dust and the self-shielding for H2, calculated with a Tree-based method, able to provide fast estimates of column densities.We find that H2 is formed faster than predicted by the usual estimates due to local density enhancements created by the gas turbulent motions. Molecular hydrogen, formed at higher densities, could then migrate toward low density warmer regions.Total H2 column densities show that the HI-to-H2 transition occurs at total column densities of a few 10^20 cm−2. We have calculated the populations of rotational levels of H2 at thermal equilibrium, and integrated along several lines of sight. These two results reproduce quite well the values observed by Copernicus and FUSE, suggesting that the observed transition and the excited populations could arise as a consequence of the multi-phase structure of molecular clouds. As H2 formation is prior to further molecule formation, warm H2 could possibly allow the development of a warm chemistry, and eventually explain some aspects of the molecular richness observed in the ISM
Ouerfelli, Ghofrane. „Étude théorique de collisions d’intérêt interstellaire“. Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0224/document.
Der volle Inhalt der QuelleThe Herschel Space Observatory satellite has permitted to detect light in the far infrared, corresponding to frequencies at which molecules emit light through rotational transitions. ALMA, an interferomete rlocated on the Chilean desert of Acatama took over Herschel and will allow new observations of cold molecular clouds with an accurate angular accuracy. ALMA observes in the range of millimeter andsub-millimeter which makes it complementary to the Satellite Herschel (far infrared). These significant advances in observing particle interactions at the microscopic level, to produce and trap diatomic molecules in specific internal states, open new perspectives in the field of collision physics and theoretical chemistry.Observation of interstellar molecules has benefited from advances in astronomy, to identify vibrational rotational ransitions of molecules. Furthermore, spectroscopic data provide us with important information on the state of the interstellar medium: ionized or neutral.The cation methylidene CH + was observed in the diffuse medium through its X1Σ + -A1Π electronictransition. It plays an important role in the different stages of the complex chemical behaviour through processes and molecular reactions that occur in interstellar and circumstellar regions. So CH+ launches large chain chemical processes that can progress to the formation of more complex species.The fine structure transition of C +; is the strongest emission line of the Milky Way. The C + ion is atracer of density and temperature in diffuse clouds and regions dominated by photons (PDR). The C +line is an important tool to probe the gas content and star formation processes in the Milky Way andother galaxies.C+ + H2 collisions can lead to the formation of CH +. This reaction has been extensively studied theoretically and experimentally, however, it is endothermic by 3211cm-1 and at the typical temperatures for MIS and H2 in its ground vibrational state, the reaction does not occur. The only process is then the C + spin-orbit excitation process.Spin orbit relaxation C + (2P1 / 2) + H 2 (v j) = C + (2P3 / 2) + H 2 (v0; j0) which was first studied inthis thesis contributes to the cooling of the gas constituting the interstellar clouds.The vibrational excitation of H2 (v> 0), which takes place during collisions with C + has a significant influence on the abundance of CH +. CH + is a highly reactive ion, it is destroyed by the abstractionreaction of hydrogen that has been considered in this work. It is therefore interesting to accurately assess the effectiveness of this path of destruction. The dilemma is that this ion is also abundantly found in the neutral and cold environment.This thesis focuses on the inelastic and reactive collisions studies of interstellar interest. We used ab initio highly correlated methods to tackle the electronic structure parts. Moreover, the nuclear dynamics of the systems was studied using a time independent quantum formalism, based on the Jacobi coordinates in the case of the spin-orbit excitation of C + (2P) + ortho H2, and para-H2 and rotational excitation of (+ CD) + He, or the hyper spherical coordinates for the reactive process in the case of the abstraction of a hydrogen in H + CH +.Our concern was to give a comprehensive basis of the mechanisms and provide a quantification of the effective spin-orbit relaxation cross sections and reaction rates to confront with spectroscopic observations. The new rate constants we obtained should help to better interpret the observations of C+ radiation emissions obtained by current and future telescopes
Lee, Ho-Hsin. „Gas-phase chemical models of interstellar molecular clouds /“. The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487948440824473.
Der volle Inhalt der QuelleNarayanan, Desika T. „The Molecular Interstellar Medium from z=0-6“. Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/194171.
Der volle Inhalt der QuelleLe, Bourlot Jacques. „Calcul de probabilites de transition d'intercombinaison entre les etats x **(1)sigma ::(g)**(+) et a **(3)pi ::(v) de c::(2) carbone moleculaire : application a l'equilibre de c::(2) dans les nuages interstellaires diffus“. Paris 7, 1987. http://www.theses.fr/1987PA077128.
Der volle Inhalt der QuelleBoichat, Paul. „Spectroscopic studies of stellar, circumstellar, interstellar and cometary media“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364672.
Der volle Inhalt der QuelleBeletsky, Yuri. „Extragalactic molecular clouds and chemistry of diffuse interstellar clouds“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-105670.
Der volle Inhalt der Quelle