Auswahl der wissenschaftlichen Literatur zum Thema „Intersection digraphs“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Intersection digraphs" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Intersection digraphs"

1

Cary, Michael. „Vertices with the second neighborhood property in Eulerian digraphs“. Opuscula Mathematica 39, Nr. 6 (2019): 765–72. http://dx.doi.org/10.7494/opmath.2019.39.6.765.

Der volle Inhalt der Quelle
Annotation:
The Second Neighborhood Conjecture states that every simple digraph has a vertex whose second out-neighborhood is at least as large as its first out-neighborhood, i.e. a vertex with the Second Neighborhood Property. A cycle intersection graph of an even graph is a new graph whose vertices are the cycles in a cycle decomposition of the original graph and whose edges represent vertex intersections of the cycles. By using a digraph variant of this concept, we prove that Eulerian digraphs which admit a simple cycle intersection graph not only adhere to the Second Neighborhood Conjecture, but that local simplicity can, in some cases, also imply the existence of a Seymour vertex in the original digraph.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chiaselotti, G., und T. Gentile. „Intersection properties of maximal directed cuts in digraphs“. Discrete Mathematics 340, Nr. 1 (Januar 2017): 3171–75. http://dx.doi.org/10.1016/j.disc.2016.07.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liu, Xujun, Roberto Assis Machado und Olgica Milenkovic. „Directed Intersection Representations and the Information Content of Digraphs“. IEEE Transactions on Information Theory 67, Nr. 1 (Januar 2021): 347–57. http://dx.doi.org/10.1109/tit.2020.3033168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lin, In-Jen, Malay K. Sen und Douglas B. West. „Intersection representation of digraphs in trees with few leaves“. Journal of Graph Theory 32, Nr. 4 (Dezember 1999): 340–53. http://dx.doi.org/10.1002/(sici)1097-0118(199912)32:4<340::aid-jgt3>3.0.co;2-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Akram, Muhammad, Wieslaw A. Dudek und M. Murtaza Yousaf. „Regularity in Vague Intersection Graphs and Vague Line Graphs“. Abstract and Applied Analysis 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/525389.

Der volle Inhalt der Quelle
Annotation:
Fuzzy graph theory is commonly used in computer science applications, particularly in database theory, data mining, neural networks, expert systems, cluster analysis, control theory, and image capturing. A vague graph is a generalized structure of a fuzzy graph that gives more precision, flexibility, and compatibility to a system when compared with systems that are designed using fuzzy graphs. In this paper, we introduce the notion of vague line graphs, and certain types of vague line graphs and present some of their properties. We also discuss an example application of vague digraphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jr, Walter D. Morris,. „Acyclic digraphs giving rise to complete intersections“. Journal of Commutative Algebra 11, Nr. 2 (April 2019): 241–64. http://dx.doi.org/10.1216/jca-2019-11-2-241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

MCCLURE, MARK. „INTERSECTIONS OF SELF-SIMILAR SETS“. Fractals 16, Nr. 02 (Juni 2008): 187–97. http://dx.doi.org/10.1142/s0218348x08003909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Szegő, László. „On covering intersecting set-systems by digraphs“. Discrete Mathematics 234, Nr. 1-3 (Mai 2001): 187–89. http://dx.doi.org/10.1016/s0012-365x(00)00381-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jonsson, Jakob. „On the number of Euler trails in directed graphs“. MATHEMATICA SCANDINAVICA 90, Nr. 2 (01.06.2002): 191. http://dx.doi.org/10.7146/math.scand.a-14370.

Der volle Inhalt der Quelle
Annotation:
Let $G$ be an Eulerian digraph with all in- and out-degrees equal to 2, and let $\pi$ be an Euler trail in $G$. We consider an intersection matrix $\boldsymbol {L}(\pi)$ with the property that the determinant of $\boldsymbol{L}(\pi) + \boldsymbol{I}$ is equal to the number of Euler trails in $G$; $\boldsymbol{I}$ denotes the identity matrix. We show that if the inverse of $\boldsymbol{L}(\pi)$ exists, then $\boldsymbol{L}^{-1}(\pi) = \boldsymbol{L}(\sigma)$ for a certain Euler trail $\sigma$ in $G$. Furthermore, we use properties of the intersection matrix to prove some results about how to divide the set of Euler trails in a digraph into smaller sets of the same size.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kurauskas, Valentas. „On small subgraphs in a random intersection digraph“. Discrete Mathematics 313, Nr. 7 (April 2013): 872–85. http://dx.doi.org/10.1016/j.disc.2012.12.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Intersection digraphs"

1

Das, Sipra. „Intersection digraphs: an analogue of intersection graphs“. Thesis, University of North Bengal, 1990. http://hdl.handle.net/123456789/580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Intersection digraphs"

1

Zamfirescu, Christina M. D. „Transformations of Digraphs Viewed as Intersection Digraphs“. In Convexity and Discrete Geometry Including Graph Theory, 27–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28186-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Caucchiolo, Andrea, und Ferdinando Cicalese. „On the Intractability Landscape of Digraph Intersection Representations“. In Lecture Notes in Computer Science, 270–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06678-8_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sinha, Kalyan, und Pinaki Majumdar. „Neutrosophic Soft Digraph“. In Advances in Data Mining and Database Management, 333–61. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1313-2.ch012.

Der volle Inhalt der Quelle
Annotation:
Neutrosophic soft sets are an important tool to deal with the uncertainty-based real and scientific problems. In this chapter, the idea of neutrosophic soft (NS) digraph has been developed. These digraphs are mainly the graphical representation of neutrosophic soft sets. A graphical study of various set theoretic operations such as union, intersection, complement, cross product, etc. are shown here. Also, some properties of NS digraphs along with theoretical concepts are shown here. In the last part of the chapter, a decision-making problem has been solved with the help of NS digraphs. Also, an algorithm is provided to solve the decision-making problems using NS digraph. Finally, a comparative study with proposed future work along this direction has been provided.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Intersection digraphs"

1

Kostochka, Alexandr V., Xujun Liu, Roberto Machado und Olgica Milenkovic. „Directed Intersection Representations and the Information Content of Digraphs“. In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Markowski, Konrad Andrzej, und Krzysztof Hryniow. „Finding a set of (A, B, C, D) realizations for single-input multiple-output dynamic system: First approach using digraph-based method for solutions with intersection vertex“. In 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2017. http://dx.doi.org/10.1109/mmar.2017.8046802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie