Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interpretable coefficients“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interpretable coefficients" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interpretable coefficients"
Lubiński, Wojciech, und Tomasz Gólczewski. „Physiologically interpretable prediction equations for spirometric indexes“. Journal of Applied Physiology 108, Nr. 5 (Mai 2010): 1440–46. http://dx.doi.org/10.1152/japplphysiol.01211.2009.
Der volle Inhalt der QuelleLIPOVETSKY, STAN. „MEANINGFUL REGRESSION COEFFICIENTS BUILT BY DATA GRADIENTS“. Advances in Adaptive Data Analysis 02, Nr. 04 (Oktober 2010): 451–62. http://dx.doi.org/10.1142/s1793536910000574.
Der volle Inhalt der QuelleLawless, Connor, Jayant Kalagnanam, Lam M. Nguyen, Dzung Phan und Chandra Reddy. „Interpretable Clustering via Multi-Polytope Machines“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 7 (28.06.2022): 7309–16. http://dx.doi.org/10.1609/aaai.v36i7.20693.
Der volle Inhalt der QuelleEshima, Nobuoki, Claudio Giovanni Borroni, Minoru Tabata und Takeshi Kurosawa. „An Entropy-Based Tool to Help the Interpretation of Common-Factor Spaces in Factor Analysis“. Entropy 23, Nr. 2 (24.01.2021): 140. http://dx.doi.org/10.3390/e23020140.
Der volle Inhalt der QuelleLiu, Jin, Robert A. Perera, Le Kang, Roy T. Sabo und Robert M. Kirkpatrick. „Obtaining Interpretable Parameters From Reparameterized Longitudinal Models: Transformation Matrices Between Growth Factors in Two Parameter Spaces“. Journal of Educational and Behavioral Statistics 47, Nr. 2 (01.12.2021): 167–201. http://dx.doi.org/10.3102/10769986211052009.
Der volle Inhalt der QuelleTakada, Masaaki, Taiji Suzuki und Hironori Fujisawa. „Independently Interpretable Lasso for Generalized Linear Models“. Neural Computation 32, Nr. 6 (Juni 2020): 1168–221. http://dx.doi.org/10.1162/neco_a_01279.
Der volle Inhalt der QuelleBazilevskiy, Mikhail Pavlovich. „Program for Constructing Quite Interpretable Elementary and Non-elementary Quasi-linear Regression Models“. Proceedings of the Institute for System Programming of the RAS 35, Nr. 4 (2023): 129–44. http://dx.doi.org/10.15514/ispras-2023-35(4)-7.
Der volle Inhalt der QuelleYeung, Michael. „Attention U-Net ensemble for interpretable polyp and instrument segmentation“. Nordic Machine Intelligence 1, Nr. 1 (01.11.2021): 47–49. http://dx.doi.org/10.5617/nmi.9157.
Der volle Inhalt der QuelleBarnett, Tim, und Patricia A. Lanier. „Comparison of Alternative Response Formats for an Abbreviated Version of Rotter's Locus of Control Scale“. Psychological Reports 77, Nr. 1 (August 1995): 259–64. http://dx.doi.org/10.2466/pr0.1995.77.1.259.
Der volle Inhalt der QuelleZheng, Fanglan, Erihe, Kun Li, Jiang Tian und Xiaojia Xiang. „A federated interpretable scorecard and its application in credit scoring“. International Journal of Financial Engineering 08, Nr. 03 (06.08.2021): 2142009. http://dx.doi.org/10.1142/s2424786321420093.
Der volle Inhalt der QuelleDissertationen zum Thema "Interpretable coefficients"
Gnanguenon, guesse Girault. „Modélisation et visualisation des liens entre cinétiques de variables agro-environnementales et qualité des produits dans une approche parcimonieuse et structurée“. Electronic Thesis or Diss., Montpellier, 2021. http://www.theses.fr/2021MONTS139.
Der volle Inhalt der QuelleThe development of digital agriculture allows to observe at high frequency the dynamics of production according to the climate. Data from these dynamic observations can be considered as functional data. To analyze this new type of data, it is necessary to extend the usual statistical tools to the functional case or develop new ones.In this thesis, we have proposed a new approach (SpiceFP: Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable by two or three functional predictors in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results through the use of combined interval classes defining a partition of the observation domain of the explanatory factors. Recent developments around LASSO (Least Absolute Shrinkage and Selection Operator) models have been adapted to estimate the areas of influence in the partition via a generalized penalized regression. The approach also integrates a double selection, of models (among the possible partitions) and of variables (areas inside a given partition) based on AIC and BIC information criteria. The methodological description of the approach, its study through simulations as well as a case study based on real data have been presented in chapter 2 of this thesis.The real data used in this thesis were obtained from a vineyard experiment aimed at understanding the impact of climate change on anthcyanins accumulation in berries. Analysis of these data in chapter 3 using SpiceFP and one extension identified a negative impact of morning combinations of low irradiance (lower than about 100 µmol/s/m2 or 45 µmol/s/m2 depending on the advanced-delayed state of the berries) and high temperature (higher than about 25°C). A slight difference associated with overnight temperature occurred between these effects identified in the morning.In chapter 4 of this thesis, we propose an implementation of the proposed approach as an R package. This implementation provides a set of functions allowing to build the class intervals according to linear or logarithmic scales, to transform the functional predictors using the joint class intervals and finally to execute the approach in two or three dimensions. Other functions help to perform post-processing or allow the user to explore other models than those selected by the approach, such as an average of different models.Keywords: Penalized regressions, Interaction, information criteria, scalar-on-function, interpretable coefficients,grapevine microclimate
FICCADENTI, Valerio. „A rank-size approach to the analysis of socio-economics data“. Doctoral thesis, 2018. http://hdl.handle.net/11393/251181.
Der volle Inhalt der QuelleBuchteile zum Thema "Interpretable coefficients"
Sohns, J. T., D. Gond, F. Jirasek, H. Hasse, G. H. Weber und H. Leitte. „Embedding-Space Explanations of Learned Mixture Behavior“. In Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes, 32–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35779-4_3.
Der volle Inhalt der QuelleTurbé, Hugues, Mina Bjelogrlic, Mehdi Namdar, Christophe Gaudet-Blavignac, Jamil Zaghir, Jean-Philippe Goldman, Belinda Lokaj und Christian Lovis. „A Lightweight and Interpretable Model to Classify Bundle Branch Blocks from ECG Signals“. In Studies in Health Technology and Informatics. IOS Press, 2022. http://dx.doi.org/10.3233/shti220393.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interpretable coefficients"
Zhang, R., G. S. Li, X. Z. Yao, J. G. Shi, Y. Guo, X. Z. Song, Z. P. Zhu und B. Y. Li. „An Interpretable Method for Formation Pressure Calculation with Embedding Mechanism“. In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0094.
Der volle Inhalt der QuelleChen, Zhi-Xuan, Cheng Jin, Tian-Jing Zhang, Xiao Wu und Liang-Jian Deng. „SpanConv: A New Convolution via Spanning Kernel Space for Lightweight Pansharpening“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/118.
Der volle Inhalt der QuelleTang, Tianning, Haoyu Ding, Saishuai Dai, Xi Chen, Paul H. Taylor, Jun Zang und Thomas A. A. Adcock. „Data Informed Model Test Design With Machine Learning – An Example in Nonlinear Wave Load on a Vertical Cylinder“. In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-102682.
Der volle Inhalt der QuelleOmer, Pareekhan. „Improving Prediction Accuracy of Lasso and Ridge Regression as an Alternative to LS Regression to Identify Variable Selection Problems“. In 3rd International Conference of Mathematics and its Applications. Salahaddin University-Erbil, 2020. http://dx.doi.org/10.31972/ticma22.05.
Der volle Inhalt der QuelleWu, Jingyao, Ting Dang, Vidhyasaharan Sethu und Eliathamby Ambikairajah. „Belief Mismatch Coefficient (BMC): A Novel Interpretable Measure of Prediction Accuracy for Ambiguous Emotion States“. In 2023 11th International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 2023. http://dx.doi.org/10.1109/acii59096.2023.10388210.
Der volle Inhalt der QuelleShao, Puheng, Zhenwu Fang, Jinxiang Wang, Zhongsheng Lin und Guodong Yin. „Modeling and Explanation of Driver Steering Style: An Experiment under Large-Curvature Road Condition“. In Human Systems Engineering and Design (IHSED 2021) Future Trends and Applications. AHFE International, 2021. http://dx.doi.org/10.54941/ahfe1001208.
Der volle Inhalt der Quelle